
Delay Measurement, Path Tracing,
and Telemetry Data Correlation
in Segment Routed Networks

Master Thesis

Author: Leonardo Rodoni

Tutors: Tobias Bühler (ETH), Thomas Graf (Swisscom), Marco Tollini (Swisscom)

Supervisor: Prof. Dr. Laurent Vanbever (ETH)

October 2021 to March 2022

Acknowledgements

I’d like to express my deepest thanks to Thomas Graf and Marco Tollini at Swisscom and Tobias
Bühler at ETH, whose continuous support and feedback have been extremely important for all
aspects of this Thesis. I would also like to thank Prof. Laurent Vanbever at ETH, for enabling
this great opportunity. I’m also grateful to Ahmed Abdelsalam at Cisco, for his help and insight.
Finally, I would also like to thank Cristina Haldemann, for her continuous motivation and support,
as well as all my family and friends.

i

Abstract

Delay measurement and forwarding path visibility are very important metrics to determine if
a network is healthy and to measure its performance. This is especially true when considering ISP
core networks built with Segment Routing or MPLS. Being able to collect accurate delays and paths
for the various VPN connections through the network would enable many use-cases for visualization
and also closed loop operation. We can use these metrics for example to verify correctness of the
network configuration, or to quickly identify congestion or failures. Path Tracing is an in-band
Telemetry protocol which provides records of forwarding paths and precise delay measurements,
both end-to-end as well as hop-by-hop, for packets traversing a Segment Routed network. Thanks
to Segment Routing, which allows steering of packets from the source, Path Tracing can be utilized
to test both active paths as well as paths that aren’t being currently used. In this Thesis we present
and evaluate two possible designs of Path Tracing based visualization pipelines which provide real-
time delay measurements and forwarding paths. Both pipelines are built with open-source software
and were deployed in a virtual Linux environment. We put high importance on enabling correlation
of the Path Tracing metrics with telemetry data from other protocols and thus the data exporting
method is a key aspect in the discussion.

ii

Contents

Contents iii

1 Introduction 1

2 Background and Related Work 3
2.1 Internet Service Provider Networks . 3

2.1.1 Segment Routing . 5
2.2 The VPP Platform . 7
2.3 Network Telemetry . 7

2.3.1 Out-of-band Telemetry . 8
2.3.2 Swisscom Environment and Technologies . 9
2.3.3 In-band Telemetry . 10
2.3.4 Path-Tracing . 11

3 Design 15
3.1 Virtual Lab Environment . 15

3.1.1 Network Topology . 15
3.1.2 Network and Testing Environment on Linux 17

3.2 Main Visualization Pipeline . 20
3.2.1 Installation and Configuration . 21
3.2.2 Pre-Processing . 21
3.2.3 Topic Processing . 24

3.3 IPFIX Integration and Postcard-based Pipeline . 25
3.3.1 IPFIX Processing . 26
3.3.2 Offline Database Queries and Joins . 26

4 Evaluation 28
4.1 Main Visualization Pipeline . 28

4.1.1 Full-Path Visualizations . 28
4.1.2 Hop-by-hop Visualizations . 32

4.2 Postcard-based Pipeline . 34
4.2.1 Issues and Limitations . 34
4.2.2 Pipeline Validation . 34

4.3 Discussion and Comparison . 37
4.3.1 Path Tracing Validation . 37
4.3.2 Evaluation and Comparison of the two Pipelines 37

iii

CONTENTS iv

5 Outlook 39
5.1 Live Network Topology Graph Visualization . 39
5.2 Path Tracing Features Extension . 39

6 Summary 41

Bibliography 42

Appendices I

Appendix A Wireshark Path Tracing Captures II
A.1 IPv6 HBH Option . II
A.2 Source SRH TLV . III
A.3 Sink SRH TLV . IV

Appendix B Path Tracing JSON Objects V
B.1 pt.probe.raw . V
B.2 pt.probe.processed . VIII
B.3 pt.probe.global . XI
B.4 pt.probe.hbh . XIII
B.5 pt.ipfix.raw . XV
B.6 pt.ipfix.processed . XVI

Appendix C SQL Queries and Table Joins XVII
C.1 SQL Query - 3-hop paths . XVII
C.2 pt.ipfix.joined - 3-hop paths . XVIII
C.3 SQL Query - 4-hop paths . XIX
C.4 pt.ipfix.joined - 4-hop paths . XX

Appendix D Declaration of Originality XXI

Chapter 1

Introduction

Thesis Motivation

A good network monitoring infrastructure is very important for Internet Service Providers (ISPs),
since visibility on the network can help verifying that everything is running correctly or quickly
detecting problems such as unexpected packet drops or congestion. On the other hand, developing
such an infrastructure is not an easy task, especially because most networking protocols are not
made to export metrics to analytics [38]. Traditional approaches rely on SNMP to export device-
specific management data that helps reconstructing a local view on packet forwarding. This ap-
proach, however, lacks the possibility to construct an abstracted visualization of the global network
differentiating the different flows. That’s the reason why at IETF1 there are many standardiza-
tion efforts for network telemetry with the ultimate goal to provide real-time deeper visibility on
network operation.

Network Telemetry refers to a newer network monitoring approach, which aims to collect data
from devices at high speeds and on real-time. The main difference with respect to traditional
protocols, such as SNMP, is that network devices are configured to proactively push data to the
collector periodically. Such protocols allow for real-time network visibility, thus paving the way
for greater network monitoring, anomaly detection and closed loop operation. Within this work
we focus mostly on delay measurements and forwarding path visibility. Delay measurements are
important in order to verify the quality of the connections in terms of latency, and to be able to
detect congestion in the network at any times. The possibility to reconstruct the forwarding paths
of packets instead can be extremely helpful in order to validate network configuration, i.e. to make
sure that packets are forwarded through the network as expected, but also to proactively check
backup paths or in general any forwarding path which isn’t currently being used.

Thesis Scope

Path Tracing is an open-source in-band telemetry protocol developed by Cisco2, recently submitted
as an IETF draft[10]. The protocol provides records of forwarding paths and precise delay measure-
ments, both end-to-end as well as hop-by-hop, for packets traversing a Segment Routed network.
Path Tracing adds to various other existing IETF drafts proposing in-band telemetry protocols.
In-band telemetry refers to a new approach which integrates network monitoring metrics into live
traffic, by inserting metadata into packets as they are traversing the network. Traditionally, delay
measurements and path reconstruction were only possible via other active probing protocols like

1https://www.ietf.org/
2https://cisco.com

1

https://www.ietf.org/
https://cisco.com

CHAPTER 1. INTRODUCTION 2

ping, traceroute or TWAMP[3]. However, these approaches don’t produce the real delays and paths
of customer packets. In-band telemetry protocols open to the possibility of measuring real metrics
of customer data packets as they’re traversing the ISP’s network.

In this Thesis we present and evaluate two possible designs of Path Tracing based visualization
pipelines which provide real-time delay measurements and forwarding path visibility for packets
traversing an SRv6 network. Path Tracing is currently only available within the VPP3 platform,
and for this reason, the network that the pipelines monitor is fully virtualized and running on a
Linux server.

Within the Thesis, we also examine the correlation possibilities of Path Tracing with other
Telemetry Protocols. Considering this and other aspects, we discuss possible improvements and
extensions of the Path Tracing protocol with the ultimate goal to integrate it better along existing
telemetry frameworks and thus in general granting more flexibility to network operators as to how
they can configure it.

Thesis Structure

In Chapter 2 we present an outline on the relevant technologies and protocols utilized or mentioned
throughout this Thesis. We start by giving an overview on the common network configurations and
operations of ISPs, focusing mainly on Layer 3 VPNs and Segment Routing. We also discuss about
industry and research current status in Network Telemetry, while also introducing the Path Tracing
protocol. Chapter 3 focuses on presenting the design of the Linux virtual network environment, as
well as the design of the two Path Tracing based visualization pipelines. In Chapter 4 we evaluate
our pipelines, and we discuss advantages and shortcomings of each, while in Chapter 5 we present
some possible improvements both on our work and on the Path Tracing project. Finally, Chapter 6
summarizes the main results and takeaways.

3https://wiki.fd.io/view/VPP

https://wiki.fd.io/view/VPP

Chapter 2

Background and Related Work

This Chapter outlines the most relevant technologies and protocols which are important for this
Thesis. In Section 2.1, we give an overview on common network configurations and operations of
Internet Service Providers (ISPs), focusing mainly on Layer 3 VPNs and Segment Routing. In
Section 2.2, we introduce the Vector Packet Processing (VPP) Platform. Then, in Section 2.3, the
attention shifts towards Network Telemetry, with a discussion about the current usage in industry
and the latest research. We present some of the more common telemetry approaches and protocols,
as well as Swisscom’s production deployment. We then introduce the new Path Tracing1 protocol
developed by Cisco and published at IETF.

2.1 Internet Service Provider Networks

The main services offered by Internet Service Providers are Internet Access and Transit for both
private and business customers. An ISP network has multiple layers, often referenced as core,
aggregation and access layers [32]. The access layer represents the so called last mile, namely the
physical connection of end customers with the ISP. The aggregation layer then gathers all the
customers connections to higher speed links and connects them to the core layer. Finally, the core
or backbone layer is responsible for providing fast, reliable and redundant data forwarding across
the whole ISP network [30]. For this reason the backbone layer is composed of high performance
routers, interconnected with high-speed and low-latency optical fiber links arranged in a highly
resilient network topology [31].

Core routers need to forward packets as fast as possible, thus a configuration with BGP [19]
as control plane protocol and IP as forwarding mechanism would cause too much of an overhead
in the forwarding decision. The reason is that the BGP table is very large, with around 900k
IPV4 and 100k IPV6 prefixes in 2021 [26], and continuing to grow. This, together with the need
for network virtualization, is why most ISPs configure their core network to use MPLS [53] as
forwarding mechanism. Multiprotocol Label Switching (MPLS) is a routing technique that uses
labels to forward packets instead of IP network addresses [34]. This enables ISPs to build BGP-free
backbones, removing the overhead of full routing table lookups from the core layer. Only the edge
routers need to retain the full routing table, and use the BGP protocol to distribute the labels
representing the forwarding for each prefix through the network. IP routing in the core is only
used for internal communication, with the default routing table, so that the backbone routers are
able to distribute prefixes and labels. Figure 2.1 presents a sketch of a simple ISP topology, also

1https://github.com/path-tracing

3

https://github.com/path-tracing

CHAPTER 2. BACKGROUND AND RELATED WORK 4

introducing some relevant terminology and details which will be discussed in the remainder of this
section.

P1

PE1

P4P2

P3

PE2

VRF Customer (on PE1)

10.0.1.0/24 via local

10.0.2.0/24 via P1 (primay)

10.0.2.0/24 via P2 (backup)

Aggregation + Access Aggregation + AccessCore / Backbone

Customer Network Customer NetworkISP Network

VRF Customer (on PE2)

10.0.2.0/24 via local

10.0.1.0/24 via P3 (primay)

10.0.1.0/24 via P4 (backup)

CE1

CE2

Terminology:

P: Core Router

PE: Provider-Edge Router

CE: Customer-Edge Router

10.0.1.0/24
10.0.2.0/24

VRF: Virtual Routing and
Forwarding Table

Figure 2.1: Simplified Internet Service Provider Network topology, with a sin-
gle business customer connecting to the ISP network at two different physical
locations. Examples of private IP addresses and routing tables (VRFs) for the
business customer are also provided.

Layer 3 VPNs

Businesses and enterprises often need to directly interconnect their various physical locations, and
for this purpose a normal Internet connection does not provide enough quality of service (QoS)
guarantees. Additionally, public IPv4 addresses are running out nowadays and thus the use of
private IPs is preferred, also for security considerations. For these reasons, some the most common
services offered by ISPs are Layer 3 Virtual Private Networks (VPNs). A Layer 3 VPN is a
type of Virtual Private Network built and delivered on OSI Layer 3 technologies [33], in which the
customer participates in IP routing with the ISP, sharing some of their prefixes over a BGP session.
The provider then creates separate VRF Tables (Virtual Routing and Forwarding [51]) for each
customer, to make sure that routing information is completely isolated from other customers and
from the default routing table while it is being tunneled via the MPLS core network.

Figure 2.1 provides an example with VRFs for a business customer. A VRF table is unique for
each PE-customer pair. The PE router again uses BPG to distribute customer prefixes, along with
the respective labels, through the core towards the other PE routers. A customer-specific route
distinguisher parameter (RD) is additionally appended to each prefix, to guarantee isolation and
uniqueness of the prefixes inside the ISP network. Layer 3 VPNs enable enterprise customers to
fully take advantage of the high speed and resiliency of the provider’s MPLS core network and thus
retain higher QoS guarantees for their interconnections.

CHAPTER 2. BACKGROUND AND RELATED WORK 5

2.1.1 Segment Routing

This Section focuses on Segment Routing [13], mainly on its newer implementation based on the
IPv6 forwarding technology: SRv6 [12]. Segment Routing can be thought of as the latest evolution
of the MPLS technology. It is a source-based routing technique, which aims at simplifying traffic
engineering and network management [40]. Segment Routing divides a network path into segments,
and to each segment it assigns a unique ID (SID) [39]. To form a forwarding path, segments are
stacked together building a Segment List. Segment Routing can be deployed either on top of an
MPLS network (MPLS-SR) or an IPv6 network (SRv6) [41]. In MPLS-SR, segments are encoded
as MPLS labels, while in SRv6 each SID is represented by a full IPv6 Address. SIDs are then
stacked to form the desired forwarding path and appended in the Segment Routing Header (SRH),
a new type of IPv6 routing extension header which enables Segment Routing capabilities on the
IPv6 forwarding plane. RFC 8754 [12] defines all fields and the encoding of IPv6 Segments in the
Segment Routing Header.

In some cases, especially within traffic engineering, the SRH can become quite large, due to the
high number of SIDs to be included. In some cases this represents an issue, as the ASICs at the
hearth of networking devices sometimes struggle in parsing long headers. IETF Draft [7] presents
a proposal to enable a compressed encoding of the SRv6 Segment IDs in the SRH to address this
issue.

Advantages of SRv6

SRv6 offers multiple advantages when compared to MPLS and also MPLS-SR, mainly thanks to the
IPv6 forwarding plane. MPLS labels are no longer required, nor are label distributing protocols.
This greatly simplifies configuration and management, as the core network really only needs the
ability to route IPv6 packets [42]. In fact, also when extended with a Segment Routing Header, the
packets are still native IPv6. Thanks to this, not all routers in the core need to have SRv6 enabled
if that’s not required for traffic engineering purposes. Backbone routers only need to run an IGP
protocol [29] to exchange an IPv6 address range as an IPv6 unicast prefix, which is used locally
to assign the various SIDs. The possibility to use IPv6 Addresses instead of labels also removes
the limitation on the label space. In fact, the 20-bit MPLS label field only allows to define slightly
more than 1 million different labels, which for networks with high level of virtualization might be
a big limitation.

Another important advantage of SRv6 over MPLS-SR is the built-in support of route summa-
rization. This is a very useful feature which can greatly simplify inter-AS routing, for providers that
have multiple networks for different services which need to be connected. With summarization, a
single route that represents all network’s routes can be advertized to other networks, thus greatly
reducing the number of route exchange messages required and increasing scalability.

SRv6 Forwarding Explained

Figure 2.2 presents an example of a packet traversing an SRv6 network, specifically in the case of
an IPv4 Layer 3 VPN, using the previously introduced simplified ISP network topology. In the
example, a customer sends a plain IP packet directed to its other physical location through the ISP.
Let’s assume the packet is sent from the 10.0.1.0/24 network towards 10.0.2.0/24. If the packet
matches policy conditions for a SRv6 path, router PE1 encapsulates it with an IPv6 Header and
appends an SRH with the Segment List. The stacked SIDs represent the path the packet needs to
be directed towards, as well as the behaviour of each traversed node when receiving it.

CHAPTER 2. BACKGROUND AND RELATED WORK 6

P1

PE1

P4P2

P3

PE2

Local SIDs (on PE1)

b1::100 - END SID

b1::104 - END.DT4 SID

b1:106 - END DT6 SID

CE1

CE2
10.0.1.0/24

10.0.2.0/24
b1::1/64

a1::1/64 a3::1/64

a2::1/64 a4::1/64

cafe:1::/64
cafe:2::/64

b2::1/64
IPv6 Header

b2::104

a4::100

a2::100

IP Header

IP Payload

IP Header

IP Payload IPv6 Header

b2::104

a4::100

a2::100

IP Header

IP Payload

IPv6 Header

b2::104

a4::100

a2::100

IP Header

IP Payload

IP Header

IP Payload

IPv6 Header

SID [2]

SID [1]

SID [0]

IP Header

IP Payload

Segment Routing Header (SRH)

(IPv6 Extension Header)

IP Packet

(IPv4 or IPv6)

Legend:

: Segments Left Pointer

Example Packet:

Local SIDs (on PE2)

b2::100 - END SID

b2::104 - END.DT4 SID

b2:106 - END DT6 SID

Local SIDs (on P2)

a2::100 - END SID

Local SIDs (on P4)

a4::100 - END SID

Local SIDs (on P1)

a1::100 - END SID

Local SIDs (on P3)

a3::100 - END SID

Figure 2.2: IP Packet forwarded through an ISP network using SRv6. The
evolution of the IPv6 Segment Routing Header is presented along the various
hops of the forwarding path. The Local SID table matches at each router are
highlighted in red.

Each ISP router is assigned a /64 network to allocate Segment IDs, and each SID represents
a locally defined instruction or function. The instructions could be as simple as just forwarding
the packet and updating the SRH as well as any complex user-defined behaviour. RFC 8986 [11]
specifies the possible functions that can be configured within SRv6. In order to setup a Layer 3
VPN, supporting both IPv4 and IPv6 customer packets, the following SID behaviours need to be
used:

• END: Endpoint. The router inspects the SRH, updates the IPv6 destination address on the
IPv6 header based on the SID stack and segments left pointer and updates the pointer, then
forwards the packet based on the default IPv6 routing table.

• END.DT4: Endpoint with decapsulation and IPv4 lookup. The router decapsulates the
packet by removing the IPv6 header and the SRH, then forwards the packet based on the
specific IPv4 VRF table.

• END.DT6: Endpoint with decapsulation and IPv6 lookup. The router decapsulates the
packet by removing the IPv6 header and the SRH, then forwards the packet based on the
specific IPv6 VRF table.

When receiving an IPv6 packet, an SRv6 capable router checks if the IPv6 destination address
matches with any of the SIDs inside the Local SIDs table, and if that’s the case it will execute the
respective function.

CHAPTER 2. BACKGROUND AND RELATED WORK 7

2.2 The VPP Platform

The Vector Packet Processing (VPP) platform is an open-source high-performance packet-processing
stack part of the FD.io2 project. The VPP framework can run on commodity hardware and pro-
vides out-of-the box production quality switch and router functionalities. It is a modular platform
built on a packet processing graph, which allows for simple extensibility, since anyone is free to
add new graph nodes or modify existing ones by adding a new plugin to the framework [47]. For
these reasons, the VPP platform is often used as testing environment for newly developed protocols
before they are rolled out to production routers.

VPP uses the vector processing technology, as opposed to the traditional scalar packet processing
approach. Scalar packet processing refers to processing one packet at a time. This approach entails
handling an interrupt and traversing the relative call stack individually for every single packet [47].
This results in poor performance, since the exact same long sequence of instructions needs to be
performed for a large number of packets, often incurring in the same cache misses [50]. The vector
packet processing approach aims to solve this problem, by processing multiple packets, i.e. a vector
of packets, at the same time.

Rather that processing a single packet through the whole processing graph, VPP reads the
largest available vector of packets from the network interface. The whole vector is then processed
step by step through the graph. This means that before moving to the next node, all packets in the
vector need to have finished going through the current node. This results in a high performance
increase with respect to the scalar approach, which is proportional to the size of the vector. The
reason is that when the first packet goes through a node, the processor loads all the useful data
into the cache. The following packets of the vector will then be able to go through the node much
faster, since most of the data required for the function calls is still saved into the cache [49].

2.3 Network Telemetry

Network Telemetry refers to both the telemetry data itself as well as the technologies used to
produce, export, collect and consume this data. This also includes visualization platforms as well
as automated processes or applications that might use the data to automate network configuration
and management. IETF draft [23] provides an architectural framework for Network Telemetry,
discussing key characteristics, main protocols and how they relate together, with the final purpose
of setting a common ground for future reference and standardization.

Drawbacks of the Traditional Approach

Traditional network monitoring techniques such as SNMP [9] rely on pull mode for the interaction
between the collector and network devices. The collector submits periodic query requests to each
device, normally every second. The devices then parse the requests and send query responses with
monitoring information back to the collector [43]. This approach is still used a lot in modern
networks, however it is outdated as it can lead to long delays before the information arrives at
the collector. This is especially problematic for on-change events: if for example an interface goes
down and the polling interval is 10 minutes, in the worst case the outage detection can take up to
10 minutes.

Network Telemetry refers to a newer network monitoring approach, which aims to collect data
from devices at high speeds and on real-time. The main difference with respect to traditional

2https://fd.io/

https://fd.io/

CHAPTER 2. BACKGROUND AND RELATED WORK 8

techniques is that telemetry uses push mode, meaning that devices proactively push data to the
collector periodically. Network Telemetry protocols only require an initial subscription exchange
between collector and devices, specifying operational parameters such as the collection period, then
the devices start generating telemetry data without any further interaction required.

Another drawback of traditional network monitoring approaches is that they only provide
device-level information. As an example, SNMP exports counter values for each connected in-
terface. This is helpful to determine the amount of traffic going through the device at a specific
time, however it cannot be used to reconstruct a real-time overall view of the network. In fact, other
than not providing real-time data, SNMP also lacks a lot of information that would be required in
order to perform network-wide correlation at the collector level.

Advantages of Network Telemetry

Network operators often need to troubleshoot connectivity issues by inspecting device-specific data
which is a complicated task, especially on large networks [38]. Network Telemetry protocols intro-
duce the possibility to correlate information from multiple layers (forwarding plane, control plane
and device statistics) at the data collection level. Thanks to correlation we can finally reconstruct
an overall view of the network, allowing operators to visualize network metrics such as flow informa-
tion or control-plane changes in real-time. Other than greatly improving network monitoring and
troubleshooting, this paves the way for greater network automation. With real-time full-network
visibility, it would possible to design a closed loop system which reacts on failures by directly
triggering device configuration changes and thus dramatically reducing incident response time!

The following Sections introduce some of the Network Telemetry protocols and provide insight
on how correlation can be performed in real-time and at scale. Within this discussion we also briefly
present Swisscom’s current Telemetry deployment. Finally, we introduce the new Path Tracing [10]
protocol developed by Cisco and recently published at IETF, which constitutes the basis for the
visualization pipeline developed in this Thesis.

2.3.1 Out-of-band Telemetry

Out-of-band Telemetry refers to all protocols that use dedicated traffic (i.e., independent from the
customers network traffic) to send telemetry data to the collector [37]. Examples of such protocols
are IPFIX [1], BMP [20] and YANG Push [8], the latter is also known as streaming telemetry.
All these protocols are based on the push approach and require a subscription or peering with the
collector, before they start sending telemetry data. IPFIX exports forwarding-plane metrics while
BMP (or BGP Monitoring Protocol) exports BGP sessions and peering information, thus providing
the control-plane perspective. YANG push is an IETF standardized subscription based mechanism
which enables export of device specific information.

IPFIX

IP Flow Information Export (IPFIX) is an IETF protocol specified by RFC 7011 [1], created as a
universal standard for exporting flow information from networking devices. At the device level the
protocol works by sampling packets and caching information locally for every observed flow, which
is usually defined by the standard 5-tuple (source and destination IP/port and protocol). This
procedure is also referenced as flow aggregation, and is described by RFC 7015 [25]. An aggregated
flow represents a set of packets from multiple original flows sharing some set of common properties.
Sampling is not mandatory, as one could also consider every packet, however is recommended in
most cases due to cache size limitations. The local cache is then flushed at regular intervals, while

CHAPTER 2. BACKGROUND AND RELATED WORK 9

the flow information is sent to the collector. The main metrics exported by IPFIX other than
the flow’s 5-tuple are usually packet and byte count as well as the time interval in which the flow
packets have been sampled. The protocol is also extensible, thus any metrics coming from any
existing or newly developed protocols might be added as well. The exported metrics are specified
in a template, which is also periodically sent to the collector along with the actual IPFIX data. All
currently defined metrics are documented by IANA [28].

2.3.2 Swisscom Environment and Technologies

Swisscom has been developing a Network Visualization Big Data Pipeline based on open-source
technologies since 2015 [38]. The final goal is fully automating network configuration thanks to
trend and anomaly detection using the real-time telemetry data provided by the pipeline. The idea
is that the network will be able to react upon failures, congestion or other issues by automatically
triggering control plane or device configuration changes. This concept is also known as closed loop
operation, and would drastically simplify the job of network operators as well as reduce network
downtime. Figure 2.3 presents a highly simplified sketch on how Swisscom’s pipeline is configured.

Network Devices Pmacct

Data Collection

Apache Kafka

Message Broker
 Time-Series Database

Figure 2.3: Swisscom’s Network Visualization Big Data Pipeline. The diagram
describes a simplified view of how telemetry data is processed, starting from
network devices to being stored in a Time-Series Database.

First, network devices push telemetry packets towards the pmacct collector. Pmacct3 is an
open-source small-set of multi-purpose passive network monitoring tools. Among other tasks it
can collect, classify, aggregate and export forwarding plane data via IPFIX; collect and correlate
control-plane data via BGP and BMP; and collect infrastructure data via YANG Push [36]. At
Swisscom, pmacct is deployed as collector for BMP and IPFIX data, and also aggregates those
dimensions together by correlating flow information to Layer 3 VPN information.

Correlation between BMP and IPFIX dimensions is performed by pmacct via the Route Dis-
tinguisher (RD) parameter. In newer versions of IPFIX this is directly possible since the RD field
is also exported: IANA entity 90, mplsVpnRouteDistinguisher [28]. With older version that don’t
support RD export, correlation is done using a static Interface-Name to RD mapping that can be
constructed via SNMP queries to the network devices.

The aggregated metrics are then produced into the Kafka4 Message Broker. Apache Kafka is an
open-source distributed event-streaming platform used within high-performance data pipelines and
streaming analytics. It is very widely deployed and supported by most existing databases backends.
Finally, the data is moved from Kafka to a Time-Series Database, with the help of Kafka Connect5.

3https://github.com/pmacct/pmacct
4https://kafka.apache.org/
5https://docs.confluent.io/platform/current/connect/index.html

https://github.com/pmacct/pmacct
https://kafka.apache.org/
https://docs.confluent.io/platform/current/connect/index.html

CHAPTER 2. BACKGROUND AND RELATED WORK 10

2.3.3 In-band Telemetry

Different from previously introduced out-of-band protocols, in-band network telemetry integrates
network monitoring metrics into live traffic, by inserting metadata into packets as they are travers-
ing the network [24]. This is usually achieved by encapsulating network packets with an additional
header, where the telemetry data is written to by the traversed network devices. Packets are then
decapsulated before exiting the telemetry domain, while the metadata is exported and sent to a
collector.

IOAM

In-situ Operation, Administration and Maintenance (IOAM) refers to an IETF standardization
effort for in-band telemetry protocols. IOAM records operational and telemetry information in
the packet while this traverses a path in the network. IETF draft [6] discusses IOAM fields and
data types, while IETF draft [5] provides a framework for IOAM deployment along with current
best practices. The latter also presents a nice reference on IOAM packet encapsulations within
various transport protocols such as IPv6 [4], SR [14] and SRv6 [2]. Some examples of metadata
fields collected are traversed node and interface IDs as well as sequence numbers and timestamps
for each traversed node. This metadata can be used to precisely determine network paths and
compute delays at the data visualization layer. The specifications are flexible, and also any other
custom generic data might be added to the packet [37]. This approach enables a whole new level
of network monitoring and visualization capabilities which are not possible only using out-of-band
protocols.

IOAM is expected to be deployed on a limited network portion, called IOAM domain. De-
vices who append IOAM metadata to packets entering the domain are called encapsulating nodes,
wherease devices which remove it are called decapsulating nodes. Other nodes within the domain
that are IOAM aware and might read, write or process IOAM data are called transit nodes [6].

Active and Passive IOAM

Passive IOAM refers to inserting IOAM data into live customer network traffic. This opens the pos-
sibility for network operators to very accurately measure real-time delay and visualize forwarding
paths of customer packets across the ISP underlay network. Without IOAM these kind of measure-
ments are only possible via other active probing approaches like ping, traceroute or TWAMP [3].
However, these approaches don’t produce the real delays and paths of customer packets.

A limitation of a purely passive telemetry system is that it only allows to visualize network
performance when traffic is being generated by customers. That is not the case at nighttime,
which is also when network operators perform maintenance tasks. Being able to evaluate network
performance on real-time during maintenance windows is essential in order to quickly determine
if something went wrong and thus minimizing disruptions. This is the reason why allowing to
actively trigger the generation of IOAM telemetry packets is also important. Active IOAM refers
to generating probe packets containing IOAM data and forwarding it through the network along
custom paths, actually simulating customer’s traffic.

Combining active with passive IOAM enables the creation of a visualization pipeline capable of
covering most network monitoring use cases in an ISP network.

CHAPTER 2. BACKGROUND AND RELATED WORK 11

Exporting Metrics: Passport vs Postcard mode

As stated in IETF draft [6], IOAM supports different option-types, or categories, representing dif-
ferent use-cases. We are mainly interested in the Trace option-types, as they record traversed node
data in the packet, such as node IDs, Interface IDs and timestamps, thus enabling path tracing and
delay visualization capabilities. IOAM Trace is inherently conceived to work with passport-based
exporting approaches. Passport mode consists of analysing, eventually aggregating and exporting
telemetry data only at the decapsulation node, when the packets exit the IOAM domain. This
approach has the advantage that the collector already receives full-path information, thus making
it very easy to reconstruct forwarding paths and respective hop-by-hop delays. Unfortunately, the
passport mode also has some limiting factors. A first disadvantage is that IOAM’s hop-by-hop
mechanism generates a lot of telemetry data, also since it is lacking filtering and compression [24].
This results in telemetry packets becoming too big, proportionally to the forwarding path length,
and thus limiting customers packet size in terms of MTU. Another problem arises at the database
level, since full-path information is very expensive to correlate. Even though IOAM information
already contains the forwarding path it is not entirely self-contained. When building a visualization
pipeline, operators might need to correlate path tracing information with other network dimensions,
such as control-plane or device metrics. This is a very CPU expensive task to be performed with
full-network table lookups, and it might severely limit the rate at which IOAM enriched packet can
be generated in the network. Finally, this approach also doesn’t take into consideration an eventual
packet drop, which would cause the loss of IOAM data along with the packet itself [24].

To overcome this issues, additional IOAM option-types implementing postcard-based approaches
have been proposed. Postcard mode refers to exporting IOAM telemetry data also at every transit
node and not exclusively at the decapsulation node. IETF draft [21] defines the Direct Export
(DEX) option, which uses an instruction header to trigger nodes to locally aggregate, process and
export IOAM data instead of appending it to the packet. IETF draft [22] proposes an alternative
approach to DEX that doesn’t require an extra instruction header, but only uses a marking bit in
existing headers to trigger IOAM data export in transit nodes.

Implementations and Proposals

Existing In-band Telemetry protocols include a P4 implementation [35], as well as a VPP imple-
mentation [48], and a recently developed linux kernel implementation [16] of IOAM Trace, the
latter both based on the IPv6 forwarding plane. The following Section presents a new open-source
protocol designed by Cisco which provides in-band telemetry capabilities on the SRv6 data-plane.

2.3.4 Path-Tracing

Path Tracing [10] is an in-band telemetry protocol which provides records of the packet’s forwarding
path as well as end-to-end delay, per-hop delay and load on each transit node interface. Path tracing
stores mid-nodes data by compressing it in a 40 bytes IPv6 Hop-by-hop (HBH) header. Overall it
allows to trace up to 14 hops (source, sink and 12 mid nodes). Thanks to compression, it has a lower
MTU overhead compared to IOAM Trace. IETF draft [10] defines the path tracing specifications
for the SRv6 data-plane, although the technology will be applicable to MPLS-SR as well. An
implementation of SRv6 path tracing is available for the VPP platform as a plugin6, currently only
supporting active probing. In the future the possibility to encapsulate customer packets (passive
in-band telemetry) might be added as well.

6https://github.com/path-tracing/vpp

https://github.com/path-tracing/vpp

CHAPTER 2. BACKGROUND AND RELATED WORK 12

Figure 2.4 provides a graphical representation of a simple Path Tracing domain as well as the
structure of probe packets carrying path tracing data.

Path Tracing Domain

Source Node

Mid Node

Sink Node

IPv6 Main Header IPv6 HBH Header SRH with PT TLV IPv6 Payload
Probe Packet

Originated by Source Node

40 bytes 40 bytes > 40 bytes

> 120 bytes

IPv6 Main Header SRH with PT TLV IPv6 Main Header IPv6 HBH Header SRH with PT TLV IPv6 Payload
Probe Packet

Encapsulated by Sink Node

> 120 bytes

40 bytes 40 bytes > 40 bytes40 bytes > 24 bytes

> 64 bytes

Collector

1

2

1 1
2

Figure 2.4: The upper part depicts a simple Path Tracing domain with the
source, a single mid-node and the sink. The Data-Collector which collects
probes from the sink node is also depicted. In the lower part, the structure of
probing packets as they’re traversing the domain is presented.

Protocol Overview

The source node originates IPv6 probe packets with an IPv6 hop-by-hop option header and a
Segment Routing Header. The HBH Header is modified by mid nodes, which write compressed
path tracing information to it. The SRH contains the required information for SRv6 steering as well
as a TLV field with path tracing information from the source node itself. TLV (type-length-value)
is an encoding scheme used to introduce optional informational elements in a certain protocol [44].

Once the packets reach the sink node, they are once again encapsulated with a new IPv6 Header
and a SRH, the latter containing a TLV with path tracing information from the sink node. This
behaviour is triggered by a new SRv6 Instruction: End.B6.TEF (i.e., ”Endpoint Behavior bound
to an SRv6 Policy with Timestamp, Encapsulation and Forward”). The reason for this additional
encapsulation is to redirect probe packets towards the collector, where they are analysed to gather
all the collected data into JSON files. Chapter 3 provides more details on all the metrics collected
and how they could be visualized within a telemetry pipeline.

The SRH generated by the source contains at least one SID (the End.B6.TEF) required by the
sink node to trigger probe packets encapsulation. Therefore its size starts from 40 bytes depending
on the SID list length. The SRH pushed by the sink node doesn’t need to contain any SIDs, since
it’s only required in order to store path-tracing information from the sink node before redirecting
the packet to the collector. Therefore its size starts from 24 bytes.

CHAPTER 2. BACKGROUND AND RELATED WORK 13

SRH Path Tracing TLV

The structure of the new SRH TLV defined for path tracing is depicted in Figure 2.5. For path
and delay computation purposes we are interested in the following fields:

• IF ID: 12 bit Interface ID (outgoing or incoming depending if the TLV is generated by source
or sink node)

• T64: 64 bit PTP Timestamp (reference RFC: [18])

 +-+
 | Type | Length | IF_ID | IF_LD |
 +-+
 | |
 + T64 +
 | |
 +-+
 | Session ID | Sequence Number |
 +-+

Figure 2.5: SRH Path Tracing TLV Format. Source: [10].

IPV6 Hop-by-hop Path Tracing Option

The format of the IPv6 path tracing option is presented in Figure 2.6. Every path tracing enabled
mid node along the forwarding path pushes the following information to the MCD (Midpoint
Compressed Data) stack:

• MCD.OIF: 12 bit interface ID associated with the egress physical port of the router

• MCD.OIL: 4 bit outgoing interface load

• MCD.TTS: 8 bit truncated timestamp

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Option Type | Opt Data Len |
 +-+
 | |
 ~ MCD Stack ~
 | |
 +-+

Figure 2.6: IPv6 Hop-by-Hop Path Tracing Option Format. Source: [10].

Currently, the VPP implementation supports a 36 bytes MCD stack (pre-allocated) with capa-
bility of storing data for up to 12 mid nodes, hence 3 bytes per node. In future versions this might

CHAPTER 2. BACKGROUND AND RELATED WORK 14

be customizable by the user, for example by reducing the maximum amount of mid nodes in order
to store more information or increase resolution of the hop-by-hop collected data.

The MCD.TTS represents a portion of the full 64 bit PTP timestamp, with different resolutions
supported depending on a chosen template. The reconstruction of the truncated timestamp as well
as the different template structures are explained in detail in Chapter 3. Examples of Wireshark7

dissected probing packets are available in Appendix A.

Summarizing

To summarize, Figure 2.7 presents a graphical overview of the in-band telemetry technologies
introduced in this Chapter, classified by data export approach, and gives an idea on how Path
Tracing fits in the overall picture. It is worth mentioning that Path Tracing is still under active
development, and in the future it will probably also support the postcard mode. Thanks to the
flexible protocol specification with two separate additional headers, the hop-by-hop IPv6 option
header could be simply omitted when running path-tracing in postcard mode, triggering data
collection, aggregation and export on transit nodes instead.

In-band Telemetry

Path Tracing

(SRv6)

IOAM Trace

(IPv6)

Passport Mode

Packet MarkingIOAM Direct Export

Postcard Mode

Figure 2.7: In-band telemetry technologies, ordered by telemetry data export
methodology. Highlighted in red is the Path Tracing protocol described in this
Section.

7https://www.wireshark.org/

https://www.wireshark.org/

Chapter 3

Design

This Chapter describes in detail the design and configuration of the whole Path Tracing [10] testing
and visualization environment we set up on an Ubuntu Linux server. The goal is to develop a
pipeline which enables us to reconstruct paths of packets and visualize relevant metrics, most
importantly full-path and hop-by-hop delays in the network. Instructions as well as the full code
and binaries required to reproduce the pipeline are available at https://github.com/rodonile/

path-tracing. Further details on the hardware configuration as well as software versions for all
the technologies that were deployed can be found in the main README file as well.

In Section 3.1, we first describe the design of the virtual lab environment, which simulates a
real ISP network with an SRv6 backbone and Path Tracing capabilities. Then, in Section 3.2, we
explain the setup of the pipeline which was deployed to analyze and visualize Path Tracing metrics.
Finally, in Section 3.3, we present an alternative approach for visualization, in which we use the
IPFIX protocol and the postcard export approach.

3.1 Virtual Lab Environment

This Section provides detailed descriptions, explanations and graphical representations about the
setup of the network environment that has been deployed for this Thesis. The environment is fully
virtual, since as of today, only a VPP implementation of the Path Tracing protocol is available.

3.1.1 Network Topology

Figure 3.1 shows the reference ISP network which we have deployed for our tests. Our main goal
when designing a suitable network topology was to emulate a real ISP network. For this reason
we chose a highly redundant core with four P-routers connected in a full mesh. We added four
PE-routers, simulating different physical locations, each connected with two P-routers to provide
resiliency. To each link we added virtual delays, according to the following pattern: 1ms or 2ms
to core links and 3ms to P-PE links. We also introduced three different business customers, which
make use of the ISP network to interconnect their various physical locations with a Layer 3 VPN.
In order to distinuguish customers’ packets we have assigned the traffic class (tc) parameter to
be consistent with the customer ID. Another important aspect we took into consideration is that
the network should have multiple possible paths interconnecting the various customers, which is
clearly satisfied in the chosen topology. This enables us to have multiple ECMP paths as well as
the possibility to deploy a wide variety of SRv6 steered paths.

Equal-cost multi-path routing (ECMP) is a routing strategy based on per-hop decisions made
independently at each router, typically with hash computations. In VPP the hash algorithm

15

https://github.com/rodonile/path-tracing
https://github.com/rodonile/path-tracing

CHAPTER 3. DESIGN 16

br12

br24
br48

br13

br35

br34

br25

vpp1

vpp6

vpp8

vpp4

vpp7

vpp5vpp3

vpp2
11

10

20
22

30

40

50

31

4121

53

32

2
3

4

3

5

2

3

3

2 2

2

4

br23 br45

Cust 1

Cust 1

Cust 1

Cust 2

Cust 2

Cust 2

br58

br26 br46

br57br37

Cust 3

Cust 3

Cust 3

PE1

PE2

PE4

PE3

P4P2

P3P1

23
24

5
6

60

61

2

3

42

44

43

4

5

6 80

81

2

3

54 6

524

51 3

70

71 3

2

Path Tracing Interface ID

IPFIX Interface Nr.

Interface Numbering:

fcbb:bb00:1::3

fcbb:bb00:8::3

fcbb:bb00:6::3

fcbb:bb00:8::1

fcbb:bb00:7::1

fcbb:bb00:1::1

fcbb:bb00:1::2

fcbb:bb00:7::2

fcbb:bb00:6::2

1ms: br23, br24, br35, br45

Link Delays:

2ms: br25, br34

3ms: br12, br13, br26, br46,

	 br37, br57, br48, br58

34
6

5
33 Flow Parameters:

Customer 1: tc=1

Customer 2: tc=2

Customer 3: tc=3

Figure 3.1: Reference ISP-like Network Topology Graph. Multiple nomenclature and
parameters are highlighted in the Graph, as it is also meant to be a reference for the in-
terpretation of the visualizations in Chapter 4. Taking the vpp1-vpp2 link as an example,
the graph depicts the link name (br12), and interface numberings at the link’s endpoints:
red for the Path Tracing IDs and blue for the IPFIX IDs. Exact link delay values are
available in the bottom right’s legend. For each router instead, we both highlight the
node name (such as vpp8) and the router type (P or PE router).

takes the following parameters into account: source and destination IP, source and destination
port, protocol, and flow-label. With ECMP, packet forwarding towards a single destination can
occur over multiple paths, provided that these paths have the same routing priority (hence equal-
cost) [52]. For the remainder of this Thesis we will reference to such paths as ECMP paths. Still
taking the network from Figure 3.1 as reference, let’s consider packets originating from customer
1’s vpp1 location (source IP: fcbb:bb00:1::1) destined at customer 1’s vpp8 location (destination IP:
fcbb:bb00:8::1). Since we haven’t assigned any particular weights to the links within the IGP routing
protocol, all links have the same routing priority. For this reason, the packets have four different
ECMP paths to get from source to destination: vpp1-vpp2-vpp4-vpp8, vpp1-vpp2-vpp5-vpp8, vpp1-
vpp3-vpp4-vpp8, and vpp1-vpp3-vpp5-vpp8. Traffic from different flows will be load balanced across
these paths.

CHAPTER 3. DESIGN 17

3.1.2 Network and Testing Environment on Linux

In order to build the virtual network based on our reference in Figure 3.1, we have written a bash
script1 that takes care of all the necessary Linux and VPP configuration. The script is based on
another simpler script2, kindly provided by the Path Tracing developers at CISCO, which sets up
a VPP network with SRv6 and Path Tracing configurations.

vpp1

vpp6

vpp8

vpp4

vpp7

vpp5vpp3

vpp2

brcollector

veth6veth1
veth0

veth7 veth8

Probe Collector

collector

Probe Generator

linux1

Probe Generator

linux7

Probe Generator

linux8

linux6

Probe Generator

fcbb:bb00:1::/64

fcbb:bb00:2::/64

fcbb:bb00:3::/64

fcbb:bb00:4::/64

fcbb:bb00:5::/64

fcbb:bb00:8::/64

fcbb:bb00:6::/64

fcbb:bb00:7::/64

2001:db8:c:e::c

2001:db8:c:e::1

2001:db8:c:e::6

2001:db8:c:e::7

2001:db8:c:e::8

2001:db8:c:e::X --> vpp-collector network

fcbb:bb00:X::/64 --> internal ISP network

Legend:

vpp1

vpp6

vpp7

vpp8

Figure 3.2: Virtual Network Environment Configuration on the Linux Server. The
graph highlights the connections between VPP nodes and probe generators processes,
which are implemented with Linux virtual interfaces. The connection between Path
Tracing sink nodes and the probe collector process is carried out with a Linux bridge.
IPv6 addresses for both the internal VPP network as well as the connections with
the probe collector (VPP-collector network) are also depicted.

Figure 3.2 shows the actual network topology that we configured on the Linux server, and
gives more insight on how the virtual environment is actually built. The setup script starts and

1https://github.com/rodonile/path-tracing/blob/main/pipeline/setup-network.sh
2https://github.com/path-tracing/scripts/blob/0ec4d7ce8ef007a8cec2402c092f336f1656d0e1/

vpp-lab-setup/setup-testbed.sh

https://github.com/rodonile/path-tracing/blob/main/pipeline/setup-network.sh
https://github.com/path-tracing/scripts/blob/0ec4d7ce8ef007a8cec2402c092f336f1656d0e1/vpp-lab-setup/setup-testbed.sh
https://github.com/path-tracing/scripts/blob/0ec4d7ce8ef007a8cec2402c092f336f1656d0e1/vpp-lab-setup/setup-testbed.sh

CHAPTER 3. DESIGN 18

configures the VPP instances, Linux interfaces and bridges. It also configures routing entries and
SRv6 parameters to enable routing and forwarding between the VPP instances. The script also
starts probe generation processes to send packets throughout the network. Finally, it launches a
tmux window providing an overview of the running processes as well as the possibility to stop or
restart the probe generation sessions. In the remainder of this Section, some important aspect of
the script are described in more detail. For further information on the virtual network configuration
refer to the script itself, which is extensively commented.

Network Topology Mapping File

While bringing up the network, the script also generates a static topology mapping file (net-
work mapping.json) in the working directory, which can be used to reconstruct the network topology
graph. For the interface as well as the linux bridges numbering schemes refer to Figure 3.1. The
mapping file includes information for every interface on the network. Here is a section of the file
with the information for interface 10 on vpp1:

"10": # Interface ID (used by Path Tracing)

{

"node_id": "vpp1",

"interface_name": "tap10",

"interface_idx": 2, # Interface IDx (used by IPFIX)

"linux_bridge": "br13",

"connected_interface": 32 # ID of the connected Interface

}

This mapping file will be used by the visualization pipeline to perform full network topology
correlation on the Path Tracing and IPFIX telemetry packets.

SRv6 and Path Tracing configuration

The following snippet provides an example on how we configured SRv6 and Path Tracing parameters
on vpp1, which is both a source and a sink node:

Enable Path Tracing on Interfaces 10 and 11

pt iface add iface tap10 id 10 tts-template 2

pt iface add iface tap11 id 11 tts-template 2

Set host interface vpp1 as Path Tracing probe generator source

pt probe-inject-iface add iface host-vpp1

Define END.SID (for SRv6 steering)

sr localsid address fcbb:bb00:1::100 behavior end

Set SRv6 source address for encapsulation (for probes redirected to collector)

set sr encaps source addr 2001:db8:c:e::1

Define behaviour for END.B6.TEF SID

sr policy add bsid fcbb:bb00:1:f0ef:: next 2001:db8:c:e::c encap tef

Thanks to the last policy configuration, if vpp1 receives an IPv6 packet with destination match-
ing the address fcbb:bb00:1:f0ef::, it will encapsulate the packet with an additional IPv6 header and
an SRH and redirect it to the collector according to Path Tracing protocol specifications.

https://github.com/rodonile/path-tracing/blob/main/pipeline/setup-network.sh

CHAPTER 3. DESIGN 19

Probing Sessions

As can be seen in Figure 3.2, the probe generator process is not embedded into the VPP node.
Instead it needs to be run as a separate set of binary processes, also developed and made available to
us by CISCO. In future IOS releases, they will be also integrated into the router OS. Currently there
are three binaries: ptprobegen (the probe generator), ptprobegen-client (a client to interact with
probe generators) and probe-collector (the collector process that receive the Path Tracing probe
packets and gathers the relevant metrics). The setup script takes care of starting the processes and
initiates probing sessions such that packets are generated in the network simulating customer traffic
as displayed in Figure 3.1. The following snippet presents an example on how we are generating
probes to simulate customer 1’s traffic between its locations on vpp1 and vpp8:

./ptprobegen-client --fls=720 --fle=1080 --ppf=100 --pps=10 --tc=1

--src-addr=fcbb:bb00:1::1

--tef-sid=fcbb:bb00:8:f0ef::

--segment-list=’fcbb:bb00:2::100,fcbb:bb00:2::100,fcbb:bb00:5::100,fcbb:bb00:8::100’

--ptprobegen=127.0.0.1:50001

The ptprobegen-client binary issues a request to ptprobegen (the probe generator process for
vpp1 listening at 127.0.0.1:50001) specifying the session parameters. In addition to source ad-
dress and END.B6.TEF SID, other flow parameters that we can configure are flow label start/end
(fls/fle), number of packets per flow (ppf), number of packets per second (pps) and traffic class (tc).
Additionally in this case we are also configuring the following SRv6 steered path for the probing
packets to traverse: vpp1 - vpp2 - vpp5 - vpp8.

Conclusion

After the virtual network is online, the setup script also launches some python programs that we
have written, whose purpose is to analyze the telemetry information coming from the probe collector
and from IPFIX. As these programs are part of the visualization pipeline, their functionalities are
explained in the following sections.

CHAPTER 3. DESIGN 20

3.2 Main Visualization Pipeline

This Section describes the design, as well as installation and configuration of our main Telemetry
Pipeline for visualizing delays and paths of packets in our virtual network environment using the
Path Tracing protocol. All software and technologies used as well as our pipeline are free and open-
source and thus reproducible by anyone. The design and chosen technologies were largely inspired
by Swisscom’s Network Telemetry Environment, which was briefly introduced in Chapter 2. A
graphical overview of the pipeline and its main processes is depicted in Figure 3.3.

pt.probe.raw

Druid TSDBKafka message broker

pt.probe.global

pt.probe.hbh

Path-tracing VPP snk nodes

vpp1
vpp6

vpp7
vpp8

pt.probe.processed

pt.probe.raw

pt.probe.processed

pt.probe.global

pt.probe.hbh

Pre-processing

Turnilo (visualization platform)

pt.probe.global

pt.probe.hbh

Topic Processing

Legend:
kafka consuming

kafka producing

TSDB queries

Probe Collector

Probe Packets

Figure 3.3: Path Tracing Main Visualization Pipeline. The diagram shows
all processes and technologies used within the pipeline, while highlighting the
overall pipeline’s operation and evolution of the telemetry data.

The Probe Collector process receives all probe packets from the sink nodes, as expected by the
Path Tracing protocol specification, which in our case are the PE routers vpp1, vpp6, vpp7, and
vpp8. When receiving a probe packet, the collector gathers all the relevant metrics from the various
headers and writes them into a JSON object, which is then produced into a Kafka Broker in the
pt.probe.raw topic. Subsequently, the JSON object is consumed, processed and re-injected into
Kafka by a set of python processes, whose scope is to decode and enrich the raw metrics so that
they can be better visualized. These processing steps are explained in greater detail throughout
the remainder of this section.

Afterwards, the processed JSON objects are ingested into a Druid instance. Apache Druid3

is an open-source real-time analytics database specifically designed for use cases such as real-time
ingestion and fast query performance [27]. Druid is also the TSDB of choice in the Swisscom
Telemetry environment.

3https://druid.apache.org/

https://druid.apache.org/

CHAPTER 3. DESIGN 21

Finally, as visualization backend we opted to use the open-source Turnilo4 software. Turnilo is
an open-source data exploration and visualization web application for Apache Druid. It is a fork
of Pivot5, which is currently available under commercial license only [45].

3.2.1 Installation and Configuration

Since this pipeline is based on a virtual network and is conceived for testing purposes we have
opted to deploy the required software within Docker containers, wherever possible, as this is the
quickest and easiest way to guarantee compatibility on multiple platforms. The Druid instance and
the Kafka Broker were both deployed as containers. A docker-compose file and instructions on how
to deploy it are available in the github repository for this Thesis. Turnilo instead was installed
directly on the server since a Docker image wasn’t provided by the project maintainers. All the
configuration files required to get the software working with our pipeline are also available on the
repository.

3.2.2 Pre-Processing

The python preprocessing script, as depicted in Figure 3.3, consumes the raw metrics from the
pt.probe.raw topic, processes them and produces the resulting JSON object in the pt.probe.pro-
cessed topic. Listing 3.1 provides an example JSON message as it is produced by the probe
collector.

{

"src_node": {

"addr": "/Lu7AAABAAAAAAAAAAAAAQ==",

"t64": 7049743939458283446,

"out_interface_id": 11

},

"snk_node": {

"addr": "/Lu7AAAIAAAAAAAAAAAAAQ==",

"t64": 7049743940258383836,

"in_interface_id": 81,

"tef_sid": "IAENuAAMAA4AAAAAAAAADA=="

},

"mcd_stack": "A+ApArAuAWAyAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA",

"path_info": [

{

"node_id": "",

"t64": 0,

"out_interface_id": 0,

"out_interface_load": 0,

"out_interface_name": ""

},

...

]

}

Listing 3.1: pt.probe.raw JSON message.

4https://github.com/allegro/turnilo
5https://imply.io/imply-pivot/

https://github.com/rodonile/path-tracing
https://github.com/rodonile/path-tracing/blob/main/pipeline/preprocessing_scripts/pre-processing.py
https://github.com/allegro/turnilo
https://imply.io/imply-pivot/

CHAPTER 3. DESIGN 22

For length reasons, JSON snippets as well as all other listings in this section have been shortened
to include only the most relevant metrics in order to explain the processing operations. Examples
of full JSON messages can be found in Appendix B.

The pt.probe.raw JSON messages, as can be seen in Listing 3.1, already contain fields for all
the metrics that are collected along the network. However, many of those fields aren’t populated
yet or set to ”0”, while others contain base64 encoded strings. The pre-processing script handles
the decoding of these fields, and the population of the missing ones. Listing 3.2 shows an example
of a JSON message produced in the pt.probe.processed topic.

{

"src_node": {

"node_id": "vpp1",

"addr": "fcbb:bb00:1::1",

"t64": 7057538678431652836,

"out_interface_id": 11

},

"snk_node": {

"node_id": "vpp8",

"addr": "fcbb:bb00:8::1",

"t64": 7057538678452034330,

"in_interface_id": 81,

"tef_sid": "2001:db8:c:e::c"

},

"midpoint_count": 3,

"path_info": [

{

"node_id": "vpp6",

"t64": 7057538678441902080,

"out_interface_id": 62

},

...

]

}

Listing 3.2: pt.probe.processed JSON message.

In order to decode hop-by-hop information, the mcd stack needs to be read in chunks of 3 bytes.
For a reference on how the stack is constructed refer to Chapter 2. The HBH information is highly
compressed, only including shortened interface IDs, interface load and truncated timestamps. To
populate full node and interface IDs, the script correlates with the statically generated network
topology mapping file (network mapping.json), previously introduced in Section 3.1.2.

Timestamp Reconstruction and Rollover Correction

The pre-processing script handles reconstruction of the 8-bit truncated timestamp into a full 64-bit
PTP timestamp (T64). The 64-bit PTP timestamp (or PTP truncated timestamp format, defined
in [18]) is composed of a 32-bit part representing the integer portion, and a 32-bit part specifying the
fractional portion of seconds (in nanoseconds) since the epoch. The timestamp format is depicted
in Figure 3.4.

Path Tracing currently supports 4 different templates, whose details are shown in Table 3.1,
in order to accommodate for different resolutions. It’s the network operator’s decision how to
configure each link’s template, depending on the type of link and its average delay.

CHAPTER 3. DESIGN 23

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Seconds |
 +-+
 | Nanoseconds |
 +-+

Figure 3.4: 64-bit PTP Timestamp Format. Source: [18].

PTP bits Rollover
(ms)

Precision
(ms)

Use-case

Template 0 Nanoseconds
[12:19]

1.04448 0.004096 Directly connected (DC) links

Template 1 Nanoseconds
[14:21]

4.17792 0.016384 Directly connected (DC) links

Template 2 Nanoseconds
[18:25]

66.84672 0.262144 WAN links

Template 3 Nanoseconds
[19:26]

133.69344 0.524288 Intercontinental links

Table 3.1: Path Tracing supported TTS Templates. For each Template the table describes
which PTP bits are taken into account and the suggested use-case relative to the link type.
Rollover intervals as well as measurement’s precision are also stated. Source: CISCO.

Timestamp reconstruction is performed in a backwards manner, taking as reference the next
node’s timestamp along the path. Following template specifications, the respective PTP bits (in
the nanoseconds portion) of the next hop’s timestamp are substituted with the truncated bits,
while the remaining LSB bits are set to 0. The result is the reconstructed T64 timestamp for the
current node.

It is important to note that a rollover check always needs to be performed on the reconstructed
timestamps. Basically, we need to make sure that the reconstructed timestamp is not bigger than
the reference next node’s timestamp. If that’s the case, a rollover happened and the timestamp
value needs to be corrected. Refer to the script itself for further insight on the calculations.

Considerations

The reason why we have to perform this pre-processing steps is because the Path Tracing project is
still under active development. In the final release, there will be a probe analyzer process (that is
currently in development) which will perform these tasks and produce the already decoded metrics
into Kafka. Hence, this pre-processing step will not be required in order to build a visualization
pipeline for Path Tracing in the future.

https://github.com/rodonile/path-tracing/blob/main/pipeline/preprocessing_scripts/pre-processing.py

CHAPTER 3. DESIGN 24

3.2.3 Topic Processing

The Topic Processing script, like illustrated in Figure 3.3, consumes from pt.probe.processed and
produces JSON messages in two new topics: pt.probe.global and pt.probe.hbh. The purpose
of this script is to enrich the metrics and prepare them for Druid ingestion and visualization.

{

"path_info": {

"nodes_path": "vpp1 --> vpp2 --> vpp5 --> vpp6 --> vpp8",

"delay": 20.32512

},

"sid_list_full": "fcbb:bb00:2::100 - fcbb:bb00:5::100 - fcbb:bb00:6::100 -

fcbb:bb00:8::100 - fcbb:bb00:8:f0ef::"

}

Listing 3.3: pt.probe.global JSON message.

Listing 3.3 provides a snippet of a JSON message produced in the pt.probe.global topic. This
information is meant to be used for visualization of full-path dimensions. Within this message we
generate strings with aggregated full-path and SID list, as well as an already computed full-path
delay.

The metrics produced into the pt.probe.hbh topic are instead aimed for visualization of per-link
dimensions. To produce messages in this topic we use a technique called explosion. This results in
generating multiple messages from a single JSON object consumed from pt.probe.processed, one
for each link along the path.

{

"link_info": {

"src_node_id": "vpp6",

"dst_node_id": "vpp8",

"src_interface_id": 62,

"dst_interface_id": 81,

"link_id": "br68",

"src_t64": 7057539335198867456,

"dst_t64": 7057539335209112773,

"delay": 10.245376

}

}

Listing 3.4: pt.probe.hbh JSON message.

Listing 3.4 provides a snippet of a JSON message produced in the pt.probe.hbh topic. In each
new message, we append a link info field containing link identification as well as timestamps and
computed delay.

https://github.com/rodonile/path-tracing/blob/main/pipeline/preprocessing_scripts/topic-processing.py

CHAPTER 3. DESIGN 25

3.3 IPFIX Integration and Postcard-based Pipeline

This Section describes the design of an alternative visualization pipeline, which makes use of the
IPFIX protocol to export metrics to a collector. Since we use IPFIX we do not receive already
correlated data from the sink nodes only, but aggregated local metrics from each VPP node in
the network (postcard-based export) instead. A graphical overview of the pipeline and its main
processes is given by Figure 3.5.

pt.ipfix.raw

Druid TSDBKafka message broker

pt.ipix.processed

VPP nodes

pt.ipfix.raw
 pt.ipfix.processed

IPFIX Processing

Turnilo (visualization platform)

pt.ipfix.processed

pt.ipfix.joined

Legend:
kafka consuming

kafka producing

TSDB queries

pmacct

nfacctd daemon

ipfix export

IPFIX protocol

pt.probe.hbh

SQL Joined Data

.csv file

OFFLINE

pt.ipfix.processed
 pt.ipfix.joined

Figure 3.5: Path Tracing Postcard-based Pipeline with IFPIX. The diagram
shows all processes and technologies used within the pipeline, highlighting the
evolution of the IPFIX data. As will be explained in the remainder of this
Section, some functionalities of the pipeline are not automated, hence need to
be performed manually and offline.

We designed this alternative pipeline mostly as a concept demonstration to give an idea on
what is possible with Path Tracing and the postcard export approach. IPFIX packets are sent by
all VPP nodes to a pmacct collector daemon, which aggregates them once again and periodically
produces them in the pt.ipfix.raw Kafka topic.

Since Path Tracing currently only supports the passport mode, in order to run this alternative
pipeline we require the main pipeline to be running as well. In fact, we use the same infrastructure
for storage and visualization. The reason is that, as will be explained in the remainder of this
section, we correlate with Path Tracing metrics to enrich the IPFIX messages with link delay
measurements.

CHAPTER 3. DESIGN 26

3.3.1 IPFIX Processing

As shown in Figure 3.5, the IPFIX Processing script consumes from the pt.ipfix.raw topic and pro-
duces delay enriched metrics into the pt.ipfix.processed topic. Concretely, the script queries the
pt.probe.hbh datasource on Druid over the IPFIX sampling interval to retrieve average, minimum
and maximum delay measurements for the relevant link. To map IPFIX indexes with Path Tracing
Interface IDs as well as to recover full node and interface IDs we correlate with the static mapping
file (network mapping.json) introduced in Section 3.1.2.

Listing 3.5 shows a snippet of a JSON message produced by the script. The metrics on the
upper block are the raw IPFIX metrics, and all the additional metrics added by the script are in
the lower block. Full JSON messages for both the pt.ipfix.raw and pt.ipfix.processed topics are
available in Appendix B. As can be seen in Listing 3.5, we now have an IPFIX message with delay
information, similar to a message that could be originating from routers supporting Path Tracing
in postcard mode.

{

"peer_ip_src": "192.168.0.4",

"iface_in": 3,

"iface_out": 6,

"ip_src": "fcbb:bb00:1::1",

"ip_dst": "fcbb:bb00:8:f0ef::",

"timestamp_export": "1645613144.000000",

"packets": 64,

"bytes": 7680,

"peer_id": "vpp4",

"link_in": "br34",

"link_in_connected_node": "vpp3",

"iface_in_avg_delay": 2.0519147610619424,

"iface_in_max_delay": 2.359296,

"iface_in_min_delay": 1.835008,

"link_out": "br48",

"link_out_connected_node": "vpp8",

"iface_out_avg_delay": 3.128008517110266,

"iface_out_max_delay": 3.41376,

"iface_out_min_delay": 2.777088

}

Listing 3.5: pt.ipfix.processed JSON message.

In reality, from a postcard implementation of Path Tracing, we would receive delay measure-
ments from source to the peer node, and not only for the previous link. We also wouldn’t receive
delay information relative to the outgoing node, because that would be provided by the next hop.
We had to introduce this information to overcome some limitations of IPFIX in VPP, which comes
from its missing SRv6 support. For instance, when a packet is encapsulated (which in our network
happens at the sink node), IPFIX doesn’t record it. This limitations as well as other issues we had
with IPFIX will be discussed more in detail in Chapter 4.

3.3.2 Offline Database Queries and Joins

With the postcard approach we don’t have a message which already contains the packet’s forwarding
paths. This information needs to be reconstructed by correlating the different IPFIX packets at the

https://github.com/rodonile/path-tracing/blob/main/pipeline/preprocessing_scripts/ipfix-processing.py

CHAPTER 3. DESIGN 27

database level. This is possible for example via SQL joins, correlating over source and destination
IP addresses and matching outbound interface with inbound interface. Listing 3.6 shows a snippet
of the SQL query we use to correlate two ipfix messages together, which allows us to reconstruct a
4-hop path in the network. The full SQL queries that we have used can be visualized in Appendix C.

SELECT ipfix1.__time AS __time,

ipfix1.ip_src AS ip_src,

ipfix1.ip_dst AS ip_dst,

ipfix1.link_in AS link_1,

ipfix2.link_in AS link_2,

ipfix2.link_out AS link_3,

(...)

FROM "pt.ipfix.processed" ipfix1

INNER JOIN "pt.ipfix.processed" ipfix2 ON (ipfix1.link_out = ipfix2.link_in and

ipfix1.ip_src = ipfix2.ip_src and ipfix1.ip_dst = ipfix2.ip_dst)

Listing 3.6: Druid SQL query with inner join

Listing 3.7 shows a snippet of a JSON message produced with the SQL query described above.
Only the most important metrics to understand the inner join are shown here. Complete JSON
messages are available in Appendix C.

{

"__time": "2022-02-24T07:37:54.446Z",

"ip_src": "fcbb:bb00:8::1",

"ip_dst": "fcbb:bb00:1:f0ef::",

"link_1": "br48",

"link_2": "br34",

"link_3": "br13",

...

}

Listing 3.7: pt.ipfix.joined JSON message

SQL querying and joining functionality are fairly new features in Apache Druid, only available
since 2021. The Pivot visualization tool supports them since February 2022. Turnilo, however, does
not support SQL yet [46]. For this reason, and since anyway this alternative pipeline is mainly
conceived as a proof of concept, we opted for an offline approach. Concretely, we downloaded the
query results from the druid GUI and reingested them in a new pt.ipfix.joined datasource, ready
to be visualized by Turnilo.

Chapter 4

Evaluation

This Chapter presents and discusses the various visualization capabilities of the two pipelines, whose
design has been described in Chapter 3. In Section 4.1 we concentrate on the main passport-based
pipeline by showing examples of what can be visualized and also relating to possible production
use-cases for delay and forwarding path visualization. In Section 4.2 we focus on the alternative
postcard-based pipeline which uses IPFIX. Finally, in Section 4.3, we compare this alternative
pipeline against our main pipeline, discussing advantages, disadvantages and possible use-cases for
each.

4.1 Main Visualization Pipeline

In order to give more context to the visualizations refer to the Network Topology introduced
in Chapter 3. In our virtual network environment there are three business customers, and to
distinguish each customer’s packets we have configured the traffic class (tc) parameter to match
the customer ID (e.g. customer 1’s packets have tc = 1). Link delays range from 1ms to 2ms in the
core (P-P links), whereas to the PE-P links we have configured 3ms delays. For each customer we
initiated a set of probing sessions with both SRv6-steered as well as best effort (i.e. ECMP) paths;
and also a combination of both.

The visualizations included in this Section can also be thought of as a live debugging procedure,
starting from a high level network visibility looking at full paths and global end-to-end delay; then
in a top-down approach applying filters to get more detailed and customer specific information.
Finally, we end up with per-link or per-hop metrics.

4.1.1 Full-Path Visualizations

Figure 4.1 displays forwarding paths for all customers in the network, and for each path shows
bandwidth (kbps) as well as average, maximum, and minimum delay computed over the selected
time interval. It also introduces the Turnilo visualization platform and gives an idea on its capa-
bilities. Turnilo allows for high flexibility with many filtering and splitting possibilities, while at
the same time being very intuitive and easy to use. On the right side panel we see IPv6 source
addresses for all customers, which we could use to filter traffic, as well as all nodes and traffic
classes.

We have chosen to visualize multiple delay-related metrics, in order to give the most insight
possible on the real behaviour of the network. Only visualizing for example the average delay might
lead in not detecting some issues. It could be the case that most probes don’t experience problems,

28

CHAPTER 4. EVALUATION 29

Figure 4.1: Turnilo visualization: bandwidth and avg/max/min delay for all
paths in the network.

but due to networking or congestion issue some rare probes experience very high delays. This
particular case would lead to a reasonable average delay, leading the network operator to think
that everything is behaving normally. To overcome such issues, in our pipeline we also measure
the maximum observed delay over the observation period. This metric would quickly help identify
probes with strangely high values.

We also visualize the minimum value of the delays. This measurement provides an estimate of
the delay due to propagation and transmission only. It can serve as an indication of the delay that
will likely be experienced when the traversed path is lightly loaded [17]. Another useful metrics that
could be implemented is the standard deviation of the delay measurements. This metric would give
an indication of how far each measured value distances from the average value. It could provide an
easy possibility to implement automated anomaly detection, i.e., by simply setting a treshold on the
standard deviation value and triggering an alert if it gets too high. In our pipeline we weren’t able
to include standard deviation nor variance estimations, since those computation are not supported
by the plywood1 expressions used by Turnilo.

Figure 4.2 displays forwarding paths through the network for customer 1 only, by applying a
filter for packets with traffic class 1. On the right side panel we can see all source IPv6 addresses
belonging to customer 1, as well as the SRv6 SID lists we are using to steer those packets through
the network.

Going one step further, Figure 4.3 focuses on customer 1’s packets originating from fcbb:bb00:1::1
directed towards vpp8, steered through the network via the following SID list: fcbb:bb00:8::f0ef::.
This means that the packets are to be forwarded in a best effort manner towards vpp8, i.e. following
the various ECMP paths existing in the network. This is verified by the visualization in Figure 4.3,

1https://plywood.imply.io/expressions

https://plywood.imply.io/expressions

CHAPTER 4. EVALUATION 30

Figure 4.2: Turnilo visualization: bandwidth and avg/max/min delay for cus-
tomer 1’s paths in the network (filtering for tc=1).

clearly showing that the packets are forwarded via four different paths. Here, again, the average,
min, and max delay are displayed for each path. As can be seen in Figure 4.3, SIDs in the SID list
have been shortened to provide an easier and cleaner visualization.

ECMP path discovery is one of the main scopes for Path Tracing, and is a very important
feature for network operators as well, because it allows to visualize all existing forwarding paths
in the network. Details on ECMP and how it works are provided in Chapter 3. This is especially
useful when planning maintenance or in general any network changes, as operators could know in
advance which paths will be selected in case some devices are switched off or some configuration
parameters are changed.

Figure 4.3: Turnilo visualization: bandwidth and avg/max/min delay
for customer 1’s packets with source address fcbb:bb00:1::1 and SID list:
fcbb:bb00:8::f0ef::.

CHAPTER 4. EVALUATION 31

Figure 4.4 visualizes the forwarding path of SRv6 steered packets instead. This is also a very
important feature, as it would allow the operators to verify correctness of the SRv6 configuration.
Here we are filtering packets still originating from fcbb:bb00:1::1 and directed towards vpp8, but
this time steered via the following SID list: fcbb:bb00:2::100 - fcbb:bb00:4::100 - fcbb:bb00:5::100 -
fcbb:bb008::100 - fcbb:bb00:8::f0ef::. This means that the packets should follow the following path:
vpp1 - vpp2 - vpp4 - vpp5 - vpp8, which is true and verified by the visualization in Figure 4.4,
since this path is the only one available if we filter for this specific SID list.

Figure 4.4: Turnilo visualization: bandwidth and avg/max/min delay
for customer 1’s packets with source address fcbb:bb00:1::1 and SID list:
fcbb:bb00:2::100 - fcbb:bb00:4::100 - fcbb:bb00:5::100 - fcbb:bb008::100 -
fcbb:bb00:8::f0ef::.

Customer Exposable Metrics

Another interesting use-case for a Path Tracing visualization pipeline is the possibility to provide
business customers with some live telemetry information concerning their packet forwarding through
the ISP network. Important here is, of course, that we shouldn’t share too much information
regarding specific configuration of the ISP’s core network and SRv6 policies.

Figure 4.5: Turnilo visualization: bandwidth and avg/max/min delay for cus-
tomer 1’s packets only displaying source and sink node.

Figure 4.5 provides an example of metrics that could be shared with customer 1, displaying
only the ISP network end-points, or PE routers. This information would provide the customer
with live data on the bandwidth as well as average, max, and min delay of his flows through the

CHAPTER 4. EVALUATION 32

ISP network, providing a quicker way to figure out in the event of problems if high delays are the
ISP’s fault or not.

4.1.2 Hop-by-hop Visualizations

Now we go one step further down, and focus on hop-by-hop metrics by queriying to the pt.probe.
hbh datasource. The visualization in Figure 4.6 depicts bandwidth as well as average, max, and
min delay for all network’s links considering all traffic. On the right side panel we see all forwarding
paths in the network. The links are ordered by the average delay, which as we can see is consistent
with the delays we artificially applied to the virtual Linux links. Starting from this visualization
it would be extremely interesting to map the per-link metrics to a network topology graph which
updates on real time. Some insights on this visualization idea are presented in Chapter 5.

Figure 4.6: Turnilo visualization: bandwidth and avg/max/min delay for all
links in the ISP network.

This type of per-hop visualization is very important from the perspective of a network operator,
as it gives visibility on all the links and thus makes it easier to identify a problem with one of the
links on real time. Figure 4.7 shows a time split focusing on link br12 connecting vpp1 and vpp2.
Around 9h40 we have artificially changed the link delay from 3ms to 10ms, and this change is
immediately detected on Turnilo. Around 9h46 we have reset the delay back to its default value
of 3ms. This is a good example on how the visualizations enabled by this pipeline can be used to
detect congestion on a link in real time.

CHAPTER 4. EVALUATION 33

Figure 4.7: Turnilo visualization: time split of link br12 visualizing bandwidth,
average and maximum delay.

CHAPTER 4. EVALUATION 34

4.2 Postcard-based Pipeline

This Section evaluates our alternative pipeline, which was developed mainly as a proof of concept to
show what is achievable with Path Tracing and the postcard export approach. Initially, we describe
the main issues and limitations we encountered when designing the pipeline, then we validate it by
comparing it with the main pipeline’s results.

4.2.1 Issues and Limitations

As briefly introduced in Chapter 3, the design of this postcard-based pipeline had to overcome
some limitations, mainly related to the IPFIX implementation in VPP. In fact, when packets are
encapsulated with an SRv6 header, they are not appearing in the IPFIX exports. This is probably
due to the fact that SRv6 was introduced later in the VPP platform, and the IPFIX functionality
was not verified to be fully compatible alongside it.

Another shortcoming is that we are able to reconstruct the forwarding path only for non SRv6
steered packets, where the destination IPv6 address doesn’t change throughout the network. The
reason behind this is that we don’t receive SRv6 specific information from IPFIX exports. In
an SRv6 steered packet, the destination IPv6 address changes at every hop, and without the
SID list to correlate on, we have no way to reconstruct the path in this case. IETF draft [15]
proposes new IPFIX elements to export metrics in the SRH, such as the full SID list (entity
ipv6SRHSegmentBasicList). This would solve our issue, and enable path reconstruction for SRv6
steered paths as well.

Another issue was related to getting hop-by-hop as well as full-path delay measurements. Since
Path Tracing doesn’t support a postcard mode export approach yet, we don’t have any delay
information exported by IPFIX. This aspect is also discussed in Chapter 5. To overcome this issue
in our pipeline, we are querying from the pt.probe.hbh datasource (which is populated by the main
pipeline) in Druid. With this approach we are enriching IPFIX exports with average, max and min
delay for the link over the sampling period. This method provides an estimate of the delay, which
for our use case is very reasonable, but is not an exact measurement. The reason is that all flows
going through that link on the sampling interval are included for the delay computation, and not
only the specific flow which is being exported.

4.2.2 Pipeline Validation

In order to validate our alternative pipeline, we compared resulting metrics against our main
passport-based pipeline. In Figure 4.8 we provide a visualization of all forwarding paths for non
SRv6 steered packets, queried from both the main pipeline and the alternative postcard-based
pipeline. We can see that all paths are correctly identified also from the alternative pipeline, with
correct bandwidth measurements. The delays are not exactly equal for the reason explained above
in this Section, but anyway very consistent.

Figure 4.9 provides time splits of bandwidth and average delay for both IPFIX and main
pipeline. Also here we see that the results are consistent. The only difference is that with the IPFIX
pipeline we don’t have the same level of fine grained precision on the bandwidth measurements,
and this is because the data arrives in ”chunks” at regular 30s intervals. With the passport-based
pipeline, the telemetry data is processed as soon as the packets arrive at the sink node, which leads
in having almost no delay between packet forwarding and telemetry data visualization.

CHAPTER 4. EVALUATION 35

Figure 4.8: Turnilo visualizations. Above: full-path of non SRv6 steered packets
(i.e. best effort through the network) with bandwidth and average delay, queried
from the IPFIX-based pipeline. Below: same visualization from above, but
queried from the main pipeline.

CHAPTER 4. EVALUATION 36

Figure 4.9: Turnilo visualizations. Left: bandwidth and average delay of all
non SRv6 steered paths in the network queried from the alternative pipeline.
Right: same visualization, but queried from the main pipeline.

CHAPTER 4. EVALUATION 37

4.3 Discussion and Comparison

4.3.1 Path Tracing Validation

As briefly mentioned in Section 4.1.2, the delay measurements are very consistent with the artificial
delays which we have introduced in the virtual Linux network using the tc2 utility. The visualization
in Figure 4.7 validates the measurements further, given that a live change of a link’s delay is instantly
reflected in Turnilo as expected.

On the other hand, bandwidth and forwarding path reconstruction are validated by the IPFIX
pipeline. In fact, these two dimensions are computed in two independent ways in the two pipelines.
The bandwidth is reconstructed thanks to the payload length field (in bytes) in the Path Tracing
messages, and thanks to the bytes field in IPFIX messages. The bandwidth measurements, as
also previously shown in Figures 4.8 and 4.9, are very consistent between the two pipelines, which
validates the result. The same reasoning is valid for the forwarding path reconstruction, which is
performed in two different manners by the two pipelines. In the main pipeline, the information is
produced by the network when the packet is forwarded, and at the collector we receive a packet
with full path information included. In the IPFIX pipeline, we perform correlation matching on
inbound, outbound interfaces and IP addresses as explained in Chapter 3.

4.3.2 Evaluation and Comparison of the two Pipelines

First, it is worth mentioning that there isn’t an approach which is clearly better than the other. Both
pipelines enable the same level of visibility on the network, the difference is on how the information
is correlated and aggregated. The choice on which approach is better suited highly depends on the
specific use case, and it mostly comes down to flexibility and scalablility reasons. The advantages
that a passport-based pipeline has over a postcard-based pipeline can be summarized as follows:

• Visualization Delay: telemetry data reaches the database and thus is queryable by the
visualization tool with an extremely low delay, that is only composed by the processing,
druid ingestion and query time. We don’t have an aggregation period in the minute range
before data is exported, like is the case for IPFIX.

• Forwarding path reconstruction: the forwarding path is already included in the probe
packet when it arrives at the probe collector, and thus no further correlation is required at
the database level in order to get this information.

The main problem with the passport-based approach is that it cannot be scaled up too much,
and it is most likely not feasible to implement with a passive telemetry approach alongside it, at
least if we require to correlate the Path Tracing information with other protocols. The reason is
that network-wide correlation is very expensive, since it requires a mapping of the whole network
that needs to be queried at the database level for all Path Tracing packets, and this doesn’t scale
well. Also, if we were to append Path Tracing metadata on all customer packets (i.e. passive
telemetry), only a very low export rate would be realistic in passport mode. It is not reasonable
to export telemetry data proportional to an ISP’s network throughput. For such a use case, the
only solution is probably a postcard-based pipeline. The advantages of a postcard-based pipeline
can be summarized as follows:

2https://man7.org/linux/man-pages/man8/tc.8.html

https://man7.org/linux/man-pages/man8/tc.8.html

CHAPTER 4. EVALUATION 38

• Data Aggregation: telemetry data is only exported at regular intervals and a single ex-
port contains aggregated measures for multiple packets of a flow. This highly reduces the
computation to be performed at the database level, thus increasing scalability.

• Local Correlation: with a telemetry data collector such as pmacct, it is possible to correlate
per-node information with other protocols, without the need of doing it globally for the full
network at the database level. This also increases scalability.

Chapter 5

Outlook

This Chapter introduces suggestions for possible future work on our pipeline. We also provide ideas
on further development of the Path Tracing protocol.

5.1 Live Network Topology Graph Visualization

A useful addition to the visualizations illustrated in Chapter 4 could be a live network topology, i.e.
a network graph showing per-hop metrics, such as bandwidth and delay directly on the links. This
way instead of listing link measures, like in the visualization from Figure 4.6, we would append the
metrics to each link, giving us a cleaner overall picture. We could even have a color code to help
visually identify issues, for instance when the delay is way too high than normal. Figure 5.1 provides
an example on how this could look like, displaying the average delay and standard deviation for
each link. For now we couldn’t implement it live, since Turnilo doesn’t support tailor-made external
visualization structures.

5.2 Path Tracing Features Extension

The Path Tracing project is currently only designed as an active telemetry protocol, supporting
generation of probe packets with in-band telemetry data. It also only supports a passport-based
data export approach. The protocol could be extended to support more functionality, so that it
would fit more use cases, integrate better in existing telemetry frameworks, and thus in general
granting more flexibility to network operators as to how they can configure it.

As previously mentioned throughout this Thesis, the protocol could be extended by allowing
a postcard-based export approach. More concretely, IPFIX could be used to aggregate average,
maximum, and minimum delay along with the other IPFIX entities, before exporting data to the
collector. Referring to Path Tracing protocol specification, this would require very small modifica-
tions. In fact, the same Path Tracing SRH TLV could be used to forward source timestamp infor-
mation along the network. Then each router would compute the delay of forwarding from source
to current node and store it in the IPFIX cache, average the measurements, identify maximum
and minimum delays and export the metrics when flushing the cache (standard IPFIX behaviour).
The only difference is that the IPv6 HBH option is now not required anymore, since metrics are
exported at each hop.

Another interesting possibility would be to extend the protocol to support passive in-band
telemetry as well, and not only active probe generation. This means that in-band telemetry data
would be available on all customer packets as well, and not only on probe packets. Concretely, this

39

CHAPTER 5. OUTLOOK 40

vpp1

vpp6

vpp8

vpp4

vpp7

vpp5vpp3

vpp2

Avg	 Delay
(ms)

St. Dev

(ms)

Legend:

3.16 0.26

3.16 0.24

1.18 0.22

1.21 0.22

2.23 0.28

2.22 0.22

3.25 0.26

1.21 0.20

3.18 0.21

1.18 0.19

3.16 0.24

3.31 0.27

3.28 0.24

3.28 0.23

Figure 5.1: Example of possible topology visualization with live metrics update.
For each link, average delay and standard deviation of the delay measurements
are displayed. Measurements for the example are taken from the same test
scenario from Figure 4.6.

means that when packets are encapsulated with the SRH based on a policy match, the Path Tracing
TLV would be added as well. This makes sense only with a postcard-based export, otherwise it
wouldn’t scale.

The combination of passive and active in-band telemetry, as explained in Chapter 2 would
guarantee monitoring capabilities for many possible scenarios. Passive telemetry can be used to
accurately measure delay and forwarding paths of customer’s packets through the ISP network,
whereas active telemetry can be deployed for path discovery, backup path testing and preventing
disruptions during maintenance.

Chapter 6

Summary

Network visibility is increasingly important within today’s large scale ISP networks. With the
Internet becoming more and more an essential need for today’s society, networking failures and
congestion need to be identified and solved as quickly as possible, preferably in an automated
manner. The goal of constructing a fully independent network operating in a closed loop which can
automatically apply configuration changes to react upon failures is only achievable together with a
deep level of visibility on the network itself.

In this Thesis we designed and evaluated two Network Telemetry visualization pipelines based
on the Path Tracing [10] protocol. Path Tracing is an in-band telemetry protocol, which enables
generation of probe packets with telemetry metadata through an SRv6 network. The pipelines’
purpose is to provide hop-by-hop and full-path delays as well as forwarding path visibility for packets
traversing the network. These metrics are very important because they allow to verify the quality
of the connections and detect congestion or failures in the network. Together with the capabilities
of an SRv6 dataplane, which means having the possibility to steer packets from the source, such
pipelines also provide a mean to test backup or non-used paths in the network. Visibility on
the active paths is important to evaluate the network’s current status and to detect issues. The
possibility to test all other paths which are not being used is an extremely useful feature as it allows
operators to forecast the future state of the network, for example when planning a maintenance
window or estimating a failure scenario.

The pipelines we designed differ from each other based on the data export approach used.
The first pipeline uses the passport approach, natively supported by the Path Tracing protocol,
which consists in exporting telemetry information relative to the full forwarding path only at the
network’s egress point. The second pipeline exports data via the IPFIX protocol, thus uses the
postcard approach. The latter refers to exposing locally aggregated telemetry data at each node
along the forwarding path.

On one hand we found that the passport based pipeline is faster in terms of visualization delay,
and provides an easy way to achieve forwarding path visibility. The reason is that the full-path
information received at the collector already contains path information. We can say that the net-
work automatically performs correlation for us. On the other hand, we need to consider scalability
limitations. In fact, for the passport based pipeline, heavy post processing of the telemetry data
with full network information is required in order to give meaning to the metrics. This highly limits
the amount of probes that can be generated. The postcard based pipeline addresses the scalability
issues thanks to local aggregation and correlation, limiting the amount of data being exported. The
disadvantage with this approach is that the forwarding path now needs to be reconstructed at the
database level.

41

Bibliography

[1] Aitken, P., Claise, B., and Trammell, B. Specification of the IP Flow Information
Export (IPFIX) Protocol for the Exchange of Flow Information. RFC 7011, Sept. 2013.
Available at https://www.rfc-editor.org/info/rfc7011.

[2] Ali, Z., Gandhi, R., Filsfils, C., Brockners, F., Nainar, N. K., Pignataro, C.,
Li, C., Chen, M., and Dawra, G. Segment Routing Header encapsulation for In-situ
OAM Data. Internet-Draft draft-ali-spring-ioam-srv6-05, Internet Engineering Task Force,
Jan. 2022. Work in Progress. Available at https://datatracker.ietf.org/doc/html/

draft-ali-spring-ioam-srv6-05.

[3] Babiarz, J., Krzanowski, R. M., Hedayat, K., Yum, K., and Morton, A. A Two-
Way Active Measurement Protocol (TWAMP). RFC 5357, Oct. 2008. Available at https:

//datatracker.ietf.org/doc/html/rfc5357.

[4] Bhandari, S., and Brockners, F. In-situ OAM IPv6 Options. Internet-
Draft draft-ietf-ippm-ioam-ipv6-options-07, Internet Engineering Task Force, Feb.
2022. Work in Progress. Available at https://datatracker.ietf.org/doc/html/

draft-ietf-ippm-ioam-ipv6-options-07.

[5] Brockners, F., Bhandari, S., Bernier, D., and Mizrahi, T. In-situ OAM Deploy-
ment. Internet-Draft draft-ietf-ippm-ioam-deployment-00, Internet Engineering Task Force,
Oct. 2021. Work in Progress. Available at https://datatracker.ietf.org/doc/html/

draft-ietf-ippm-ioam-deployment/.

[6] Brockners, F., Bhandari, S., and Mizrahi, T. Data Fields for In-situ
OAM. Internet-Draft draft-ietf-ippm-ioam-data-17, Internet Engineering Task Force,
Dec. 2021. Work in Progress. Available at https://datatracker.ietf.org/doc/html/

draft-ietf-ippm-ioam-data.

[7] Cheng, W., Filsfils, C., Li, Z., Decraene, B., Cai, D., Voyer, D., Clad, F., Zadok,
S., Guichard, J., Liu, A., Raszuk, R., and Li, C. Compressed SRv6 Segment List En-
coding in SRH. Internet-Draft draft-ietf-spring-srv6-srh-compression-01, Internet Engineering
Task Force, Mar. 2022. Work in Progress. Available at https://datatracker.ietf.org/

doc/html/draft-ietf-spring-srv6-srh-compression-01.

[8] Clemm, A., and Voit, E. Subscription to YANG Notifications for Datastore Updates. RFC
8641, Sept. 2019. Available at https://www.rfc-editor.org/info/rfc8641.

[9] Fedor, M., Schoffstall, M. L., Davin, J. R., and Case, D. J. D. Simple Network Man-
agement Protocol (SNMP). RFC 1157, May 1990. Available at https://www.rfc-editor.

org/rfc/rfc1157.txt.

42

https://www.rfc-editor.org/info/rfc7011
https://datatracker.ietf.org/doc/html/draft-ali-spring-ioam-srv6-05
https://datatracker.ietf.org/doc/html/draft-ali-spring-ioam-srv6-05
https://datatracker.ietf.org/doc/html/rfc5357
https://datatracker.ietf.org/doc/html/rfc5357
https://datatracker.ietf.org/doc/html/draft-ietf-ippm-ioam-ipv6-options-07
https://datatracker.ietf.org/doc/html/draft-ietf-ippm-ioam-ipv6-options-07
https://datatracker.ietf.org/doc/html/draft-ietf-ippm-ioam-deployment/
https://datatracker.ietf.org/doc/html/draft-ietf-ippm-ioam-deployment/
https://datatracker.ietf.org/doc/html/draft-ietf-ippm-ioam-data
https://datatracker.ietf.org/doc/html/draft-ietf-ippm-ioam-data
https://datatracker.ietf.org/doc/html/draft-ietf-spring-srv6-srh-compression-01
https://datatracker.ietf.org/doc/html/draft-ietf-spring-srv6-srh-compression-01
https://www.rfc-editor.org/info/rfc8641
https://www.rfc-editor.org/rfc/rfc1157.txt
https://www.rfc-editor.org/rfc/rfc1157.txt

BIBLIOGRAPHY 43

[10] Filsfils, C., Abdelsalam, A., Camarillo, P., Yufit, M., Graf, T., Su, Y., and
Matsushima, S. Path Tracing in SRv6 networks. Internet-Draft draft-filsfils-spring-path-
tracing-00, Internet Engineering Task Force, Mar. 2022. Work in Progress. Available at https:
//datatracker.ietf.org/doc/html/draft-filsfils-spring-path-tracing.

[11] Filsfils, C., Camarillo, P., Leddy, J., Voyer, D., Matsushima, S., and Li, Z.
Segment Routing over IPv6 (SRv6) Network Programming. RFC 8986, Feb. 2021. Available
at https://www.rfc-editor.org/info/rfc8986.

[12] Filsfils, C., Dukes, D., Previdi, S., Leddy, J., Matsushima, S., and Voyer, D.
IPv6 Segment Routing Header (SRH). RFC 8754, Mar. 2020. Available at https://www.

rfc-editor.org/info/rfc8754.

[13] Filsfils, C., Previdi, S., Ginsberg, L., Decraene, B., Litkowski, S., and Shakir, R.
Segment Routing Architecture. RFC 8402, July 2018. Available at https://www.rfc-editor.
org/info/rfc8402.

[14] Gandhi, R., Ali, Z., Brockners, F., Wen, B., Decraene, B., and Kozak, V. MPLS
Data Plane Encapsulation for In-situ OAM Data. Internet-Draft draft-gandhi-mpls-ioam-
03, Internet Engineering Task Force, Feb. 2022. Work in Progress. Available at https://

datatracker.ietf.org/doc/html/draft-gandhi-mpls-ioam.

[15] Graf, T., and Claise, B. Export of Segment Routing IPv6 Information in IP Flow Informa-
tion Export (IPFIX). Internet-Draft draft-tgraf-opsawg-ipfix-srv6-srh-02, Internet Engineering
Task Force, Mar. 2022. Work in Progress. Available at https://datatracker.ietf.org/doc/
html/draft-tgraf-opsawg-ipfix-srv6-srh-02.

[16] Iurman, J., Donnet, B., and Brockners, F. Implementation of ipv6 ioam in linux kernel,
Aug. 2020.

[17] Kalidindi, S., Zekauskas, M. J., and Almes, D. G. T. A One-way Delay Metric for
IPPM. RFC 2679, Sept. 1999. Available at https://datatracker.ietf.org/doc/html/

rfc2679.

[18] Mizrahi, T., Fabini, J., and Morton, A. Guidelines for Defining Packet Timestamps.
RFC 8877, Sept. 2020. Available at https://datatracker.ietf.org/doc/html/rfc8877.

[19] Rekhter, Y., Hares, S., and Li, T. A Border Gateway Protocol 4 (BGP-4). RFC 4271,
Jan. 2006. Available at https://www.rfc-editor.org/info/rfc4271.

[20] Scudder, J., Fernando, R., and Stuart, S. BGP Monitoring Protocol (BMP). RFC
7854, June 2016. Available at https://www.rfc-editor.org/info/rfc7854.

[21] Song, H., Gafni, B., Zhou, T., Li, Z., Brockners, F., Bhandari, S., Sivakolundu,
R., and Mizrahi, T. In-situ OAM Direct Exporting. Internet-Draft draft-ietf-ippm-ioam-
direct-export-07, Internet Engineering Task Force, Oct. 2021. Work in Progress. Available at
https://datatracker.ietf.org/doc/html/draft-ietf-ippm-ioam-direct-export-07.

[22] Song, H., Mirsky, G., Filsfils, C., Abdelsalam, A., Zhou, T., Li, Z.,
Shin, J., and Lee, K. In-Situ OAM Marking-based Direct Export. Internet-
Draft draft-song-ippm-postcard-based-telemetry-11, Internet Engineering Task Force, Nov.
2021. Work in Progress. Available at https://datatracker.ietf.org/doc/html/

draft-song-ippm-postcard-based-telemetry-11.

https://datatracker.ietf.org/doc/html/draft-filsfils-spring-path-tracing
https://datatracker.ietf.org/doc/html/draft-filsfils-spring-path-tracing
https://www.rfc-editor.org/info/rfc8986
https://www.rfc-editor.org/info/rfc8754
https://www.rfc-editor.org/info/rfc8754
https://www.rfc-editor.org/info/rfc8402
https://www.rfc-editor.org/info/rfc8402
https://datatracker.ietf.org/doc/html/draft-gandhi-mpls-ioam
https://datatracker.ietf.org/doc/html/draft-gandhi-mpls-ioam
https://datatracker.ietf.org/doc/html/draft-tgraf-opsawg-ipfix-srv6-srh-02
https://datatracker.ietf.org/doc/html/draft-tgraf-opsawg-ipfix-srv6-srh-02
https://datatracker.ietf.org/doc/html/rfc2679
https://datatracker.ietf.org/doc/html/rfc2679
https://datatracker.ietf.org/doc/html/rfc8877
https://www.rfc-editor.org/info/rfc4271
https://www.rfc-editor.org/info/rfc7854
https://datatracker.ietf.org/doc/html/draft-ietf-ippm-ioam-direct-export-07
https://datatracker.ietf.org/doc/html/draft-song-ippm-postcard-based-telemetry-11
https://datatracker.ietf.org/doc/html/draft-song-ippm-postcard-based-telemetry-11

BIBLIOGRAPHY 44

[23] Song, H., Qin, F., Martinez-Julia, P., Ciavaglia, L., and Wang, A. Network
Telemetry Framework. Internet-Draft draft-ietf-opsawg-ntf-13, Internet Engineering Task
Force, Dec. 2021. Work in Progress. Available at https://datatracker.ietf.org/doc/html/
draft-ietf-opsawg-ntf-13.

[24] Tan, L., Su, W., Zhang, Z., Miao, J., Liu, X., and Li, N. In-band network telemetry:
A survey, Aug. 2020.

[25] Trammell, B., Wagner, A., and Claise, B. Flow Aggregation for the IP Flow Information
Export (IPFIX) Protocol. RFC 7015, Sept. 2013. Available at https://datatracker.ietf.

org/doc/html/rfc7015.

[26] What will happen when the routing table hits 1024k? https://blog.apnic.net/2021/03/

03/what-will-happen-when-the-routing-table-hits-1024k/. [Accessed February-2022].

[27] Druid. https://druid.apache.org/docs/latest/design/index.html. [Accessed March-
2022].

[28] Ip flow information export (ipfix) entities. https://www.iana.org/assignments/ipfix/

ipfix.xhtml. [Accessed February-2022].

[29] Interior gatewas protocol. https://en.wikipedia.org/wiki/Interior_gateway_protocol.
[Accessed February-2022].

[30] Typical isp network architecture. https://www.packetnetworking.com/

typical-isp-network-architecture/. [Accessed February-2022].

[31] Isp network design. http://blog.rapidlinksnetworks.co.uk/isp-network-design/. [Ac-
cessed February-2022].

[32] Isp network design (presentation). https://au.int/sites/default/files/documents/

31363-doc-session_8-1-_isp-network-design.pdf. [Accessed February-2022].

[33] Layer 3 vpn (l3vpn). https://www.techopedia.com/definition/30757/

layer-3-vpn-l3vpn. [Accessed February-2022].

[34] Multiprotocol label switching (mpls). https://en.wikipedia.org/wiki/Multiprotocol_

Label_Switching. [Accessed February-2022].

[35] In-band network telemetry (int) dataplane specification. https://p4.org/p4-spec/docs/

INT_v2_1.pdf. [Accessed February-2022].

[36] Pmacct project website. http://www.pmacct.net/. [Accessed February-2022].

[37] Next-gen network telemetry is within your packets: In-band oam (cisco live 2018). https:

//www.ciscolive.com/c/dam/r/ciscolive/emea/docs/2018/pdf/BRKSDN-2901.pdf. [Ac-
cessed February-2022].

[38] Swisscom network analytics visibility for a closed loop oper-
ated network. https://www.swinog.ch/wp-content/uploads/2021/12/

Thomas-Graf-and-Marco-Tollini-Swisscom-Network-Analytics-with-BMP-IPFIX-and-YANG-Push.

pdf. [Accessed February-2022].

https://datatracker.ietf.org/doc/html/draft-ietf-opsawg-ntf-13
https://datatracker.ietf.org/doc/html/draft-ietf-opsawg-ntf-13
https://datatracker.ietf.org/doc/html/rfc7015
https://datatracker.ietf.org/doc/html/rfc7015
https://blog.apnic.net/2021/03/03/what-will-happen-when-the-routing-table-hits-1024k/
https://blog.apnic.net/2021/03/03/what-will-happen-when-the-routing-table-hits-1024k/
https://druid.apache.org/docs/latest/design/index.html
https://www.iana.org/assignments/ipfix/ipfix.xhtml
https://www.iana.org/assignments/ipfix/ipfix.xhtml
https://en.wikipedia.org/wiki/Interior_gateway_protocol
https://www.packetnetworking.com/typical-isp-network-architecture/
https://www.packetnetworking.com/typical-isp-network-architecture/
http://blog.rapidlinksnetworks.co.uk/isp-network-design/
https://au.int/sites/default/files/documents/31363-doc-session_8-1-_isp-network-design.pdf
https://au.int/sites/default/files/documents/31363-doc-session_8-1-_isp-network-design.pdf
https://www.techopedia.com/definition/30757/layer-3-vpn-l3vpn
https://www.techopedia.com/definition/30757/layer-3-vpn-l3vpn
https://en.wikipedia.org/wiki/Multiprotocol_Label_Switching
https://en.wikipedia.org/wiki/Multiprotocol_Label_Switching
https://p4.org/p4-spec/docs/INT_v2_1.pdf
https://p4.org/p4-spec/docs/INT_v2_1.pdf
http://www.pmacct.net/
https://www.ciscolive.com/c/dam/r/ciscolive/emea/docs/2018/pdf/BRKSDN-2901.pdf
https://www.ciscolive.com/c/dam/r/ciscolive/emea/docs/2018/pdf/BRKSDN-2901.pdf
https://www.swinog.ch/wp-content/uploads/2021/12/Thomas-Graf-and-Marco-Tollini-Swisscom-Network-Analytics-with-BMP-IPFIX-and-YANG-Push.pdf
https://www.swinog.ch/wp-content/uploads/2021/12/Thomas-Graf-and-Marco-Tollini-Swisscom-Network-Analytics-with-BMP-IPFIX-and-YANG-Push.pdf
https://www.swinog.ch/wp-content/uploads/2021/12/Thomas-Graf-and-Marco-Tollini-Swisscom-Network-Analytics-with-BMP-IPFIX-and-YANG-Push.pdf

BIBLIOGRAPHY 45

[39] Segment routing. https://support.huawei.com/enterprise/en/doc/EDOC1100092117.
[Accessed February-2022].

[40] What is segment routing? https://www.juniper.net/us/en/research-topics/

what-is-segment-routing.html. [Accessed February-2022].

[41] Segment routing. https://en.wikipedia.org/wiki/Segment_routing. [Accessed February-
2022].

[42] What is srv6? https://info.support.huawei.com/info-finder/encyclopedia/en/SRv6.

html. [Accessed February-2022].

[43] Network telemetry. https://info.support.huawei.com/info-finder/encyclopedia/en/

Telemetry.html. [Accessed February-2022].

[44] Type-length-value. https://en.wikipedia.org/wiki/Type%E2%80%93length%E2%80%

93value. [Accessed February-2022].

[45] Turnilo. https://github.com/allegro/turnilo. [Accessed March-2022].

[46] Adapting turnilo to sql backend? https://github.com/allegro/turnilo/issues/674. [Ac-
cessed March-2022].

[47] What is vpp? https://wiki.fd.io/view/VPP/What_is_VPP. [Accessed February-2022].

[48] Vpp inband oam (ioam). https://docs.fd.io/vpp/17.04/ioam_plugin_doc.html. [Ac-
cessed February-2022].

[49] Vpp technology. https://fd.io/gettingstarted/technology/. [Accessed February-2022].

[50] Scalar vs vector packet processing. https://fd.io/docs/vpp/v2101/whatisvpp/

scalar-vs-vector-packet-processing.html. [Accessed February-2022].

[51] Virtual routing and forwarding. https://en.wikipedia.org/wiki/Virtual_routing_and_

forwarding. [Accessed February-2022].

[52] Equal-cost multi-path routing. https://en.wikipedia.org/wiki/Equal-cost_multi-path_
routing. [Accessed March-2022].

[53] Viswanathan, A., Rosen, E. C., and Callon, R. Multiprotocol Label Switching Archi-
tecture. RFC 3031, Jan. 2001. Available at https://www.rfc-editor.org/info/rfc3031.

https://support.huawei.com/enterprise/en/doc/EDOC1100092117
https://www.juniper.net/us/en/research-topics/what-is-segment-routing.html
https://www.juniper.net/us/en/research-topics/what-is-segment-routing.html
https://en.wikipedia.org/wiki/Segment_routing
https://info.support.huawei.com/info-finder/encyclopedia/en/SRv6.html
https://info.support.huawei.com/info-finder/encyclopedia/en/SRv6.html
https://info.support.huawei.com/info-finder/encyclopedia/en/Telemetry.html
https://info.support.huawei.com/info-finder/encyclopedia/en/Telemetry.html
https://en.wikipedia.org/wiki/Type%E2%80%93length%E2%80%93value
https://en.wikipedia.org/wiki/Type%E2%80%93length%E2%80%93value
https://github.com/allegro/turnilo
https://github.com/allegro/turnilo/issues/674
https://wiki.fd.io/view/VPP/What_is_VPP
https://docs.fd.io/vpp/17.04/ioam_plugin_doc.html
https://fd.io/gettingstarted/technology/
https://fd.io/docs/vpp/v2101/whatisvpp/scalar-vs-vector-packet-processing.html
https://fd.io/docs/vpp/v2101/whatisvpp/scalar-vs-vector-packet-processing.html
https://en.wikipedia.org/wiki/Virtual_routing_and_forwarding
https://en.wikipedia.org/wiki/Virtual_routing_and_forwarding
https://en.wikipedia.org/wiki/Equal-cost_multi-path_routing
https://en.wikipedia.org/wiki/Equal-cost_multi-path_routing
https://www.rfc-editor.org/info/rfc3031

Appendices

I

Appendix A

Wireshark Path Tracing Captures

Here are Wireshark packet captures of path tracing probe packets. The Wireshark patch supporting
path tracing is available at: https://github.com/path-tracing/wireshark.

A.1 IPv6 HBH Option

Figure A.1: IPv6 Path Tracing HBH Option Header.

II

https://github.com/path-tracing/wireshark

APPENDIX A. WIRESHARK PATH TRACING CAPTURES III

A.2 Source SRH TLV

Figure A.2: Source SRH Header with Path Tracing TLV.

APPENDIX A. WIRESHARK PATH TRACING CAPTURES IV

A.3 Sink SRH TLV

Figure A.3: Sink SRH Header with Path Tracing TLV.

Appendix B

Path Tracing JSON Objects

B.1 pt.probe.raw

{

"src_node": {

"node_id": "",

"addr": "/Lu7AAABAAAAAAAAAAAAAQ==",

"t64": 7049743939458283446,

"out_interface_id": 11,

"out_interface_load": 0,

"out_interface_name": ""

},

"snk_node": {

"node_id": "",

"addr": "/Lu7AAAIAAAAAAAAAAAAAQ==",

"t64": 7049743940258383836,

"in_interface_id": 81,

"in_interface_load": 0,

"tef_sid": "IAENuAAMAA4AAAAAAAAADA==",

"in_interface_name": ""

},

"traffic_class": 0,

"flow_label": 1,

"payload_length": 64,

"hop_limit": 250,

"hbh_opt_length": 36,

"midpoint_count": 0,

"mcd_stack": "A+ApArAuAWAyAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA",

"srh_tag": 0,

"srh_flag": 0,

"segments_left": 0,

"sid_list": null,

"session_id": 1,

"sequence_number": 7,

"path_info": [

{

"node_id": "",

"t64": 0,

"out_interface_id": 0,

V

APPENDIX B. PATH TRACING JSON OBJECTS VI

"out_interface_load": 0,

"out_interface_name": ""

},

{

"node_id": "",

"t64": 0,

"out_interface_id": 0,

"out_interface_load": 0,

"out_interface_name": ""

},

{

"node_id": "",

"t64": 0,

"out_interface_id": 0,

"out_interface_load": 0,

"out_interface_name": ""

},

{

"node_id": "",

"t64": 0,

"out_interface_id": 0,

"out_interface_load": 0,

"out_interface_name": ""

},

{

"node_id": "",

"t64": 0,

"out_interface_id": 0,

"out_interface_load": 0,

"out_interface_name": ""

},

{

"node_id": "",

"t64": 0,

"out_interface_id": 0,

"out_interface_load": 0,

"out_interface_name": ""

},

{

"node_id": "",

"t64": 0,

"out_interface_id": 0,

"out_interface_load": 0,

"out_interface_name": ""

},

{

"node_id": "",

"t64": 0,

"out_interface_id": 0,

"out_interface_load": 0,

"out_interface_name": ""

},

{

"node_id": "",

APPENDIX B. PATH TRACING JSON OBJECTS VII

"t64": 0,

"out_interface_id": 0,

"out_interface_load": 0,

"out_interface_name": ""

},

{

"node_id": "",

"t64": 0,

"out_interface_id": 0,

"out_interface_load": 0,

"out_interface_name": ""

},

{

"node_id": "",

"t64": 0,

"out_interface_id": 0,

"out_interface_load": 0,

"out_interface_name": ""

},

{

"node_id": "",

"t64": 0,

"out_interface_id": 0,

"out_interface_load": 0,

"out_interface_name": ""

},

{

"node_id": "",

"t64": 0,

"out_interface_id": 0,

"out_interface_load": 0,

"out_interface_name": ""

},

{

"node_id": "",

"t64": 0,

"out_interface_id": 0,

"out_interface_load": 0,

"out_interface_name": ""

}

]

}

Listing B.1: pt.probe.raw JSON message.

APPENDIX B. PATH TRACING JSON OBJECTS VIII

B.2 pt.probe.processed

{

"src_node": {

"node_id": "vpp1",

"addr": "fcbb:bb00:1::1",

"t64": 7057538678431652836,

"out_interface_id": 11,

"out_interface_load": 0,

"out_interface_name": "tap11"

},

"snk_node": {

"node_id": "vpp8",

"addr": "fcbb:bb00:8::1",

"t64": 7057538678452034330,

"in_interface_id": 81,

"in_interface_load": 0,

"tef_sid": "2001:db8:c:e::c",

"in_interface_name": "tap81"

},

"traffic_class": 0,

"flow_label": 105,

"payload_length": 144,

"hop_limit": 250,

"hbh_opt_length": 36,

"midpoint_count": 3,

"mcd_stack": "A+BHA0BGAVBGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA",

"srh_tag": 0,

"srh_flag": 0,

"segments_left": 0,

"sid_list": [

"fcbb:bb00:2::100",

"fcbb:bb00:5::100",

"fcbb:bb00:6::100",

"fcbb:bb00:8::100",

"fcbb:bb00:8:f0ef::"

],

"session_id": 1,

"sequence_number": 5,

"path_info": [

{

"node_id": "vpp6",

"t64": 7057538678441902080,

"out_interface_id": 62,

"out_interface_load": 0,

"out_interface_name": "tap62"

},

{

"node_id": "vpp5",

"t64": 7057538678441639936,

"out_interface_id": 52,

"out_interface_load": 0,

"out_interface_name": "tap52"

APPENDIX B. PATH TRACING JSON OBJECTS IX

},

{

"node_id": "vpp2",

"t64": 7057538678441639965,

"out_interface_id": 21,

"out_interface_load": 0,

"out_interface_name": "tap21"

},

{

"node_id": "",

"t64": 0,

"out_interface_id": 0,

"out_interface_load": 0,

"out_interface_name": ""

},

{

"node_id": "",

"t64": 0,

"out_interface_id": 0,

"out_interface_load": 0,

"out_interface_name": ""

},

{

"node_id": "",

"t64": 0,

"out_interface_id": 0,

"out_interface_load": 0,

"out_interface_name": ""

},

{

"node_id": "",

"t64": 0,

"out_interface_id": 0,

"out_interface_load": 0,

"out_interface_name": ""

},

{

"node_id": "",

"t64": 0,

"out_interface_id": 0,

"out_interface_load": 0,

"out_interface_name": ""

},

{

"node_id": "",

"t64": 0,

"out_interface_id": 0,

"out_interface_load": 0,

"out_interface_name": ""

},

{

"node_id": "",

"t64": 0,

"out_interface_id": 0,

APPENDIX B. PATH TRACING JSON OBJECTS X

"out_interface_load": 0,

"out_interface_name": ""

},

{

"node_id": "",

"t64": 0,

"out_interface_id": 0,

"out_interface_load": 0,

"out_interface_name": ""

},

{

"node_id": "",

"t64": 0,

"out_interface_id": 0,

"out_interface_load": 0,

"out_interface_name": ""

},

{

"node_id": "",

"t64": 0,

"out_interface_id": 0,

"out_interface_load": 0,

"out_interface_name": ""

},

{

"node_id": "",

"t64": 0,

"out_interface_id": 0,

"out_interface_load": 0,

"out_interface_name": ""

}

]

}

Listing B.2: pt.probe.processed JSON message.

APPENDIX B. PATH TRACING JSON OBJECTS XI

B.3 pt.probe.global

{

"src_node": {

"node_id": "vpp1",

"addr": "fcbb:bb00:1::1",

"t64": 7057539335188787818,

"out_interface_id": 11,

"out_interface_load": 0,

"out_interface_name": "tap11"

},

"snk_node": {

"node_id": "vpp8",

"addr": "fcbb:bb00:8::1",

"t64": 7057539335209112773,

"in_interface_id": 81,

"in_interface_load": 0,

"tef_sid": "2001:db8:c:e::c",

"in_interface_name": "tap81"

},

"traffic_class": 0,

"flow_label": 105,

"payload_length": 144,

"hop_limit": 250,

"hbh_opt_length": 36,

"midpoint_count": 3,

"mcd_stack": "A+C4A0C4AVC4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA",

"srh_tag": 0,

"srh_flag": 0,

"segments_left": 0,

"sid_list": [

"fcbb:bb00:2::100",

"fcbb:bb00:5::100",

"fcbb:bb00:6::100",

"fcbb:bb00:8::100",

"fcbb:bb00:8:f0ef::"

],

"session_id": 1,

"sequence_number": 5,

"path_info": {

"nodes_path": "vpp1 --> vpp2 --> vpp5 --> vpp6 --> vpp8",

"nodes_path_list": [

"vpp1",

"vpp2",

"vpp5",

"vpp6",

"vpp8"

],

"interface_id_path": "11 --> 21 --> 52 --> 62 --> 81",

"interface_name_path": "tap11 --> tap21 --> tap52 --> tap62 --> tap81",

"delay": 20.32512

},

APPENDIX B. PATH TRACING JSON OBJECTS XII

"sid_list_full": "fcbb:bb00:2::100 - fcbb:bb00:5::100 - fcbb:bb00:6::100 -

fcbb:bb00:8::100 - fcbb:bb00:8:f0ef::"

}

Listing B.3: pt.probe.global JSON message.

APPENDIX B. PATH TRACING JSON OBJECTS XIII

B.4 pt.probe.hbh

{

"src_node": {

"node_id": "vpp1",

"addr": "fcbb:bb00:1::1",

"t64": 7057539335188787818,

"out_interface_id": 11,

"out_interface_load": 0,

"out_interface_name": "tap11"

},

"snk_node": {

"node_id": "vpp8",

"addr": "fcbb:bb00:8::1",

"t64": 7057539335209112773,

"in_interface_id": 81,

"in_interface_load": 0,

"tef_sid": "2001:db8:c:e::c",

"in_interface_name": "tap81"

},

"traffic_class": 0,

"flow_label": 105,

"payload_length": 144,

"hop_limit": 250,

"hbh_opt_length": 36,

"midpoint_count": 3,

"mcd_stack": "A+C4A0C4AVC4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA",

"srh_tag": 0,

"srh_flag": 0,

"segments_left": 0,

"sid_list": [

"fcbb:bb00:2::100",

"fcbb:bb00:5::100",

"fcbb:bb00:6::100",

"fcbb:bb00:8::100",

"fcbb:bb00:8:f0ef::"

],

"session_id": 1,

"sequence_number": 5,

"path_info": {

"nodes_path": "vpp1 --> vpp2 --> vpp5 --> vpp6 --> vpp8",

"nodes_path_list": [

"vpp1",

"vpp2",

"vpp5",

"vpp6",

"vpp8"

],

"interface_id_path": "11 --> 21 --> 52 --> 62 --> 81",

"interface_name_path": "tap11 --> tap21 --> tap52 --> tap62 --> tap81",

"delay": 20.32512

},

"link_info": {

APPENDIX B. PATH TRACING JSON OBJECTS XIV

"src_node_id": "vpp6",

"dst_node_id": "vpp8",

"src_interface_id": 62,

"dst_interface_id": 81,

"src_interface_name": "tap62",

"dst_interface_name": "tap81",

"link_id": "br68",

"src_t64": 7057539335198867456,

"dst_t64": 7057539335209112773,

"delay": 10.245376

},

"sid_list_full": "fcbb:bb00:2::100 - fcbb:bb00:5::100 - fcbb:bb00:6::100 -

fcbb:bb00:8::100 - fcbb:bb00:8:f0ef::"

}

Listing B.4: pt.probe.hbh JSON message.

APPENDIX B. PATH TRACING JSON OBJECTS XV

B.5 pt.ipfix.raw

{

"event_type": "purge",

"peer_ip_src": "192.168.0.5",

"iface_in": 5,

"iface_out": 3,

"ip_src": "fcbb:bb00:6::2",

"ip_dst": "fcbb:bb00:7:f0ef::",

"ip_proto": "0",

"timestamp_start": "1644234403.000000",

"timestamp_end": "0.000000",

"timestamp_arrival": "1644234403.322197",

"timestamp_min": "1644234403.000000",

"timestamp_max": "1644234403.000000",

"timestamp_export": "1644234403.000000",

"stamp_inserted": "1644234360",

"stamp_updated": "1644234411",

"packets": 181,

"bytes": 21720,

"writer_id": "ptipfix/146530"

}

Listing B.5: pt.ipfix.raw JSON message.

APPENDIX B. PATH TRACING JSON OBJECTS XVI

B.6 pt.ipfix.processed

{

"event_type": "purge",

"peer_ip_src": "192.168.0.4",

"iface_in": 3,

"iface_out": 6,

"ip_src": "fcbb:bb00:1::1",

"ip_dst": "fcbb:bb00:8:f0ef::",

"ip_proto": "ipv6-hbh",

"timestamp_start": "1645613144.000000",

"timestamp_end": "0.000000",

"timestamp_arrival": "1645613144.969221",

"timestamp_min": "1645613144.000000",

"timestamp_max": "1645613145.000000",

"timestamp_export": "1645613144.000000",

"stamp_inserted": "1645613100",

"stamp_updated": "1645613151",

"packets": 64,

"bytes": 7680,

"writer_id": "ptipfix/489921",

"peer_id": "vpp4",

"iface_in_id": "41",

"iface_in_name": "tap41",

"link_in": "br34",

"link_in_connected_iface": "31",

"link_in_connected_node": "vpp3",

"iface_in_avg_delay": 2.0519147610619424,

"iface_in_count_considered_for_delay": 226,

"iface_in_max_delay": 2.359296,

"iface_in_min_delay": 1.835008,

"iface_out_id": "44",

"iface_out_name": "tap44",

"link_out": "br48",

"link_out_connected_iface": "80",

"link_out_connected_node": "vpp8",

"iface_out_avg_delay": 3.128008517110266,

"iface_out_count_considered_for_delay": 263,

"iface_out_max_delay": 3.41376,

"iface_out_min_delay": 2.777088

}

Listing B.6: pt.ipfix.processed JSON message.

Appendix C

SQL Queries and Table Joins

C.1 SQL Query - 3-hop paths

SELECT ipfix1.__time AS __time,

ipfix1.ip_src AS ip_src,

ipfix1.ip_dst AS ip_dst,

ipfix1.link_in_connected_node AS src_node,

ipfix1.link_in AS link_1,

ipfix1.peer_id AS mid_node_1,

ipfix1.link_out AS link_2,

ipfix1.link_out_connected_node AS snk_node,

ipfix1.iface_in_avg_delay AS link_1_delay_avg, ipfix1.iface_in_max_delay AS

link_1_delay_max, ipfix1.iface_in_min_delay AS link_1_delay_min,

ipfix1.iface_out_avg_delay AS link_2_delay_avg, ipfix1.iface_out_max_delay AS

link_2_delay_max, ipfix1.iface_out_min_delay AS link_2_delay_min,

ipfix1.iface_in_avg_delay + ipfix1.iface_out_avg_delay AS full_path_delay_avg,

ipfix1.packets AS link_1_packets, ipfix1.packets AS link_2_packets,

ipfix1.bytes AS link_1_bytes, ipfix1.bytes AS link_2_bytes,

ipfix1.iface_in_count_considered_for_delay AS link_1_count_considered_for_delay,

ipfix1.iface_out_count_considered_for_delay AS link_2_count_considered_for_delay

FROM "pt.ipfix.processed" ipfix1

WHERE ipfix1.__time >= CURRENT_TIMESTAMP - INTERVAL ’1’ HOUR

ORDER BY ipfix1.__time DESC

Listing C.1: Druid SQL query (no join, for 3-hop paths)

XVII

APPENDIX C. SQL QUERIES AND TABLE JOINS XVIII

C.2 pt.ipfix.joined - 3-hop paths

{

"__time": "2022-02-24T07:36:09.318Z",

"ip_src": "fcbb:bb00:7::2",

"ip_dst": "fcbb:bb00:1:f0ef::",

"src_node": "vpp7",

"link_1": "br37",

"mid_node_1": "vpp3",

"link_2": "br13",

"snk_node": "vpp1",

"link_1_delay_avg": 3.147104000000000,

"link_1_delay_max": 3.67488,

"link_1_delay_min": 2.808832,

"link_2_delay_avg": 3.10636246913580,

"link_2_delay_max": 3.91936,

"link_2_delay_min": 2.83136,

"full_path_delay_avg": 6.253466469135803,

"link_1_packets": 31,

"link_2_packets": 31,

"link_1_bytes": 3720,

"link_2_bytes": 3720,

"link_1_count_considered_for_delay": 328,

"link_2_count_considered_for_delay": 324

}

Listing C.2: pt.ipfix.joined JSON message (no join, 3-hop paths)

APPENDIX C. SQL QUERIES AND TABLE JOINS XIX

C.3 SQL Query - 4-hop paths

SELECT ipfix1.__time AS __time,

ipfix1.ip_src AS ip_src,

ipfix1.ip_dst AS ip_dst,

ipfix1.link_in_connected_node AS src_node,

ipfix1.link_in AS link_1, ipfix1.peer_id AS mid_node_1,

ipfix2.link_in AS link_2, ipfix2.peer_id AS mid_node_2,

ipfix2.link_out AS link_3,

ipfix2.link_out_connected_node AS snk_node,

ipfix1.iface_in_avg_delay AS link_1_delay_avg, ipfix1.iface_in_max_delay AS

link_1_delay_max, ipfix1.iface_in_min_delay AS link_1_delay_min,

ipfix2.iface_in_avg_delay AS link_2_delay_avg, ipfix2.iface_in_max_delay AS

link_2_delay_max, ipfix2.iface_in_min_delay AS link_2_delay_min,

ipfix2.iface_out_avg_delay AS link_3_delay_avg, ipfix2.iface_out_max_delay AS

link_3_delay_max, ipfix2.iface_out_min_delay AS link_3_delay_min,

ipfix1.iface_in_avg_delay + ipfix2.iface_in_avg_delay +

ipfix2.iface_out_avg_delay AS full_path_delay_avg,

ipfix1.packets AS link_1_packets, ipfix2.packets AS link_2_packets,

ipfix2.packets AS link_3_packets,

ipfix1.bytes AS link_1_bytes, ipfix2.bytes AS link_2_bytes, ipfix2.bytes AS

link_3_bytes,

ipfix1.iface_in_count_considered_for_delay AS link_1_count_considered_for_delay,

ipfix2.iface_in_count_considered_for_delay AS link_2_count_considered_for_delay,

ipfix2.iface_out_count_considered_for_delay AS link_3_count_considered_for_delay,

TIMESTAMP_TO_MILLIS(ipfix1.__time) - TIMESTAMP_TO_MILLIS(ipfix2.__time) AS

time_difference

FROM "pt.ipfix.processed" ipfix1

INNER JOIN "pt.ipfix.processed" ipfix2 ON (ipfix1.link_out = ipfix2.link_in and

ipfix1.ip_src = ipfix2.ip_src and ipfix1.ip_dst = ipfix2.ip_dst)

WHERE ipfix1.__time >= CURRENT_TIMESTAMP - INTERVAL ’1’ HOUR AND ipfix2.__time >=

CURRENT_TIMESTAMP - INTERVAL ’1’ HOUR

AND TIMESTAMP_TO_MILLIS(ipfix1.__time) - TIMESTAMP_TO_MILLIS(ipfix2.__time) < 10000

AND TIMESTAMP_TO_MILLIS(ipfix1.__time) - TIMESTAMP_TO_MILLIS(ipfix2.__time) > -10000

ORDER BY ipfix1.__time DESC

Listing C.3: Druid SQL query (1 join, for 4-hop paths)

APPENDIX C. SQL QUERIES AND TABLE JOINS XX

C.4 pt.ipfix.joined - 4-hop paths

{

"__time": "2022-02-24T07:37:54.446Z",

"ip_src": "fcbb:bb00:8::1",

"ip_dst": "fcbb:bb00:1:f0ef::",

"src_node": "vpp8",

"link_1": "br48",

"mid_node_1": "vpp4",

"link_2": "br34",

"mid_node_2": "vpp3",

"link_3": "br13",

"snk_node": "vpp1",

"link_1_delay_avg": 3.235917772151899,

"link_1_delay_max": 4.175872,

"link_1_delay_min": 2.875648,

"link_2_delay_avg": 2.2065686260869537,

"link_2_delay_max": 6.029312,

"link_2_delay_min": 1.835008,

"link_3_delay_avg": 3.1524461359223293,

"link_3_delay_max": 3.637248,

"link_3_delay_min": 2.829056,

"full_path_delay_avg": 8.594932534161181,

"link_1_packets": 6,

"link_2_packets": 6,

"link_3_packets": 6,

"link_1_bytes": 720,

"link_2_bytes": 720,

"link_3_bytes": 720,

"link_1_count_considered_for_delay": 158,

"link_2_count_considered_for_delay": 115,

"link_3_count_considered_for_delay": 103

}

Listing C.4: pt.ipfix.joined JSON message (1 join, 4-hop path)

Appendix D

Declaration of Originality

XXI

	Contents
	Introduction
	Background and Related Work
	Internet Service Provider Networks
	Segment Routing

	The VPP Platform
	Network Telemetry
	Out-of-band Telemetry
	Swisscom Environment and Technologies
	In-band Telemetry
	Path-Tracing

	Design
	Virtual Lab Environment
	Network Topology
	Network and Testing Environment on Linux

	Main Visualization Pipeline
	Installation and Configuration
	Pre-Processing
	Topic Processing

	IPFIX Integration and Postcard-based Pipeline
	IPFIX Processing
	Offline Database Queries and Joins

	Evaluation
	Main Visualization Pipeline
	Full-Path Visualizations
	Hop-by-hop Visualizations

	Postcard-based Pipeline
	Issues and Limitations
	Pipeline Validation

	Discussion and Comparison
	Path Tracing Validation
	Evaluation and Comparison of the two Pipelines

	Outlook
	Live Network Topology Graph Visualization
	Path Tracing Features Extension

	Summary
	Bibliography
	Appendices
	Appendix Wireshark Path Tracing Captures
	IPv6 HBH Option
	Source SRH TLV
	Sink SRH TLV

	Appendix Path Tracing JSON Objects
	pt.probe.raw
	pt.probe.processed
	pt.probe.global
	pt.probe.hbh
	pt.ipfix.raw
	pt.ipfix.processed

	Appendix SQL Queries and Table Joins
	SQL Query - 3-hop paths
	pt.ipfix.joined - 3-hop paths
	SQL Query - 4-hop paths
	pt.ipfix.joined - 4-hop paths

	Appendix Declaration of Originality

